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Pipeline leak detection is crucial for maintaining pipeline safety, particularly in complex environments. This 
study proposes a novel approach that integrates infrared cameras with a convolutional neural network model, 
specifically VGG16, utilizing infrared cameras that do not inherently measure temperature. Our results indicate 
that this approach is highly effective, with the model achieving 100% accuracy on both the training and validation 
datasets, and a near-zero validation loss in a laboratory environment. The confusion matrix confirmed that 
there were no misclassifications, and the Receiver Operating Characteristic (ROC) curve demonstrated an 
Area Under the Curve (AUC) of 1.0. These findings underscore the model's potential for real-world pipeline 
monitoring applications.
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Pipeline leak detection is a critical concern in 
industries such as oil and gas, as well as water 
management, due to its significant economic and 
environmental implications. Effective detection of 
leaks is essential to minimize losses and prevent 
environmental damage [1,2].

Various methods have been developed for 
detecting pipeline leaks, including the use of 
ultrasonic sensors, thermal cameras, and infrared 
cameras. Ultrasonic sensors detect changes in 
acoustic signals within the pipeline but face 
limitations due to physical access constraints and 
environmental noise interference [3]. Thermal 
cameras identify variations in surface temperature, 
although their effectiveness can be compromised 
by environmental conditions and variations in 
ambient temperature [4]. Infrared cameras are 
particularly notable for their ability to detect 
temperature differences with high sensitivity 
without direct contact. These cameras capture 
emitted infrared radiation and convert it into 
visible images, enabling the detection of thermal 
anomalies that may indicate leaks [5].

Infrared cameras operate by detecting thermal 
radiation emitted by all objects above absolute 
zero. This radiation is captured by sensors within 
the camera and converted into a visible image that 
represents the thermal distribution of the observed 
objects. The main advantage of infrared cameras is 
their ability to perform inspections without physical 
contact and in low-visibility conditions. However, 
these cameras can be expensive and require precise 
calibration to ensure measurement accuracy [1,2].

To analyze and classify images captured by 
infrared cameras, advanced image processing 
techniques and machine learning algorithms 
are employed. Traditional image processing 
techniques may include filtering to enhance 
specific features and segmentation to isolate 
areas of interest. Machine learning algorithms, 
particularly Convolutional Neural Networks 
(CNNs), are widely used to recognize patterns and 
detect anomalies in thermal images [4]. Recent 
advancements in deep learning have shown 
significant improvements in the automatic and 
accurate detection of leaks. These methods involve 
training models with extensive datasets of infrared 
images, enabling efficient differentiation between 
leaks and other thermal characteristics [3,5].

The work presented by Xie and colleagues 
[6] introduces an innovative automated leakage 
detection method that combines infrared 
thermography (IRT) with the Faster R-CNN object 
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detection technique. This methodology utilizes a 
modified VGG16 network for feature extraction, 
allowing for the detection of finer leakage features 
and details in the original infrared images. The 
study reports high performance metrics, with mean 
Average Precisions (mAPs) of 1.00, 0.98, and 0.99 
for detecting leaks at pipes, valves, and flanges, 
respectively, under various leakage scenarios. 
The results demonstrate that the proposed system 
is both practical and robust, maintaining high 
detection accuracy even in complex backgrounds 
and diverse operational conditions, such as 
varying ambient light, changes in camera angles, 
and pedestrian interference.

In this study, we propose a similar pipeline leak 
detection system of Xie and colleagues [6]. However, 
we use an infrared camera that does not natively 
measure temperature. Our objective is to assess 
whether this non-temperature-measuring infrared 
camera can achieve comparable performance to 
the system described by Xie and colleagues [6]. 
By evaluating this alternative approach, we aim 
to determine its effectiveness in real-world leak 
detection scenarios and contribute to the broader 
application of infrared imaging technologies in 
pipeline monitoring. This investigation will provide 
insights into the feasibility and performance of 
using non-temperature-sensitive infrared cameras 
for detecting pipeline leaks, further advancing the 
field of automated pipeline monitoring and safety.

 
Materials and Methods

This study presents the development and 
validation of a convolutional neural network (CNN) 
for detecting leaks in images. The method covers 
the experimental setup description and model 
training details, divided into data preparation, 
model architecture, training procedures, and 
performance evaluation in detail.

 
Model Training

The dataset consists of images organized 
into 'leak' and 'noleak' categories. Each image is 

resized to 224x224 pixels and normalized to a [0, 
1] range to standardize input features. Labels are 
encoded as binary values, with `0` for 'noleak' and 
`1` for 'leak'. To ensure balanced representation, 
the data is split into training and validation sets 
using stratified sampling, which preserves the 
proportion of each class.

The model utilizes the VGG16 architecture, 
a well-known CNN pre-trained on the ImageNet 
dataset. The base model, which includes multiple 
convolutional layers followed by max-pooling 
layers, is used as a feature extractor by excluding 
its top classification layer. The extracted feature 
maps are processed by a custom classification 
head designed as follows:
•	 Flattening Layer: Converts the 2D feature maps 

into a 1D vector.
•	 Dense Layer: A fully connected layer with 512 

units and ReLU activation, described by

	 	 (1)

where 𝑥 is the input to the layer.
•	 Dropout Layer: Applied with a rate of 0.5 to 

reduce overfitting by randomly setting half of 
the neurons to zero during training.

•	 Output Dense Layer: A single unit with sigmoid 
activation, which outputs a probability 𝑝 for the 
binary classification:
where 𝑥 is the input to the sigmoid function.

	 	 (2)

The model is compiled using the Adam 
optimizer, which adjusts the learning rate 
adaptively based on estimates of first and second 
moments of the gradients. The learning rate is 
set to (1 × 10−4). Adam is defined by the under 
rule:

	 	
(3)

where (θt) is the parameter, (α) is the learning 
rate, (mt) and (vt) are estimates of the first and 
second moments of the gradients, respectively, 
and (ϵ) is a small constant for numerical stability.
Binary cross-entropy is used as the loss function, 
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which measures the difference between the 
accurate labels 𝑦 and the predicted probabilities 𝑝:

	 	 (2)

The model is trained for ten epochs with a 
batch size of 32. During training, the model's 
performance is monitored using accuracy and loss 
metrics, and training progress is recorded with a 
CSV logger. The average inference time per image 
is calculated to assess computational efficiency.

 
Experiment Setup (Figure 1)

To experiment, it was essential to establish a 
system capable of simulating a fluid leak in a pipe. 
The experimental setup comprised a cyclical water 
system utilizing an aquarium pump connected to 
a PVC pipe. The water transported by the pump 
traverses the pipe and is subsequently returned 
to the same receptacle as the pump, thereby 
completing the cycle. The water was heated using 
a portable electric heater/blower, thus enabling the 
camera to identify thermal variations in the fluid in 
relation to the pipe. Two distinct PVC pipes were 
used: one with an aperture to simulate the leak 
and one without, serving as a control. Data was 
collected using an FLIR ADK camera, which was 
connected to a computer running a Python script. 
This script was programmed to take pictures at 
100-millisecond intervals, capturing thermal 
images of the pipe and allowing for a detailed 
analysis of the fluid conditions and identification 
of the simulated leak.

 

Results and Discussion

The model's performance was comprehensively 
evaluated using several metrics, including accuracy, 
loss, confusion matrix, and the Receiver Operating 
Characteristic (ROC) curve. The following analysis 
provides a detailed examination of each metric, 
offering insights into the model's performance.

Figure 2 presents the training and validation 
accuracy over the course of the epochs. The 
training accuracy increased from 52.5% in the first 
epoch to 100% by the final epoch, indicating that 
the model effectively learned from the training 
data. Similarly, the validation accuracy also 
reached 100% towards the end of the training, 
suggesting that the model generalized well to 
the unseen validation data. This high accuracy 
is indicative of the model's strong performance; 
however, achieving 100% accuracy may also raise 
concerns about potential overfitting. It is crucial to 
ensure that the training and validation datasets are 
sufficiently diverse to mitigate this risk.

The model's performance was comprehensively 
evaluated using several metrics, including 
accuracy, loss, confusion matrix, and the Receiver 
Operating Characteristic (ROC) curve. The 
following analysis provides a detailed examination 
of each metric and offers insights into the model's 
performance.

Figure 2 presents the training and validation 
accuracy over the course of the epochs. The 
training accuracy increased from 52.5% in the first 
epoch to 100% by the final epoch, indicating that 
the model effectively learned from the training 
data. Similarly, the validation accuracy also 
reached 100% towards the end of the training, 
suggesting that the model generalized well to 
the unseen validation data. This high accuracy 
is indicative of the model's strong performance; 
however, achieving 100% accuracy may also raise 
concerns about potential overfitting. It is crucial to 
ensure that the training and validation datasets are 
sufficiently diverse to mitigate this risk.

Figure 3 illustrates the training and validation 
loss over the epochs. The training loss decreased 

Figure 1. Technical setup drawing.
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significantly from 0.82 to 0.00188, while 
the validation loss dropped from 0.6775 to 
0.0001258. This steady reduction in loss values 
indicates that the model improved consistently 
throughout the training process and maintained 
its performance on the validation set. The near-
zero loss values for both training and validation 
phases underscore the model's effectiveness 
in minimizing error, although it is important 
to remain cautious about potential overfitting. 

Figure 2. Training and validation accuracy. The confusion matrix shown in Figure 4 reveals a 
perfect classification result, with no false positives 
or false negatives. This matrix indicates that the 
model accurately identified all positive and negative 
cases, highlighting its reliability in distinguishing 
between classes. The absence of misclassifications 
reflects the model’s high precision and effectiveness 
in the classification task.

Figure 4 shows the matrix with  no 
misclassifications, reflecting the model’s high 
accuracy in predicting the correct class for each 
sample.	

Figure 5 presents the Receiver Operating 
Characteristic (ROC) curve, which demonstrates 
an Area Under the Curve (AUC) of 1.0. This 
perfect AUC indicates that the model has an 
exceptional ability to discriminate between 
positive and negative cases. The ROC curve 
reinforces the findings from the confusion 
matrix, showcasing the model’s excellent 
performance in detecting the target class with an 
actual positive rate of 1.0 and no false positives. 
The results from the accuracy, loss, confusion 
matrix, and ROC curve collectively suggest that 
the model performs exceptionally well in detecting 
pipeline leaks. The high accuracy and low loss 
values indicate practical training and strong 
generalization capabilities. The perfect confusion 
matrix and ROC AUC further validate the model's 
robustness and reliability in classification tasks.

The results from the accuracy, loss, confusion 
matrix, and ROC curve collectively suggest that 
the model performs exceptionally well in detecting 
pipeline leaks. The high accuracy and low loss 
values indicate practical training and strong 
generalization capabilities. The perfect confusion 
matrix and ROC AUC further validate the model's 
robustness and reliability in classification tasks.
Despite these positive results, it is important to 
consider the potential for overfitting, as indicated 
by the perfect performance across all metrics. 
Future work should involve evaluating the model 
on more diverse and realistic datasets to ensure 
its generalizability and effectiveness in real-world 
scenarios.

 

Figure 3. Training and validation loss.
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Figure 4. Confusion matrix.

Conclusion

This study evaluated a pipeline leak detection 
system that utilizes infrared thermography in 
conjunction with advanced machine learning 
techniques. Adapting a method based on a VGG16-
based Faster R-CNN approach, we tested an infrared 
camera that does not natively measure temperature 
to see if it could achieve comparable performance.
The model performed exceptionally well, reaching 
100% accuracy and showing no misclassifications, 
as confirmed by the ROC curve's AUC of 
1.0. However, perfect accuracy suggests potential 
overfitting, indicating a need for further validation 
on more diverse datasets. The performance of this 
model has achieved better results than those shown 
in Xie and colleagues [6]. However, it is necessary 
to consider that this work has been tested only 
in a laboratory in one single pipeline; the work 
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developed in Xie and colleagues [6] was tested 
in an environment more similar to an operational 
system and has more complex structures.

While our findings are promising, future 
research should focus on testing the model in 
more complex environments, improving model 
robustness against overfitting, and exploring 
alternative infrared cameras that might enhance 
detection accuracy. Additionally, implementing 
the model in real-time systems and conducting 
comparative analyses with other leak detection 
methods will help to assess its real-world 
applicability and identify areas for improvement.
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