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Pipeline Leak Detection Using Infrared Cameras: A Convolutional Neural Network Approach

Jodo Vitor S. Mendes'", Jodo Pedro Almeida’, Rodrigo Dias Paolillo?, Alexandre Adonai Silva', Rodrigo F. Bastos’,
Herman A. Lepikson’

'Robotics Deptartment, SENAI CIMATEC University; *Optics and Photonics Department, SENAI CIMATEC University,
Salvador, Bahia, Brazil

Pipeline leak detection is crucial for maintaining pipeline safety, particularly in complex environments. This
study proposes a novel approach that integrates infrared cameras with a convolutional neural network model,
specifically VGG16, utilizing infrared cameras that do not inherently measure temperature. Our results indicate
that this approach is highly effective, with the model achieving 100% accuracy on both the training and validation
datasets, and a near-zero validation loss in a laboratory environment. The confusion matrix confirmed that
there were no misclassifications, and the Receiver Operating Characteristic (ROC) curve demonstrated an
Area Under the Curve (AUC) of 1.0. These findings underscore the model's potential for real-world pipeline

monitoring applications.
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Pipeline leak detection is a critical concern in
industries such as oil and gas, as well as water
management, due to its significant economic and
environmental implications. Effective detection of
leaks is essential to minimize losses and prevent
environmental damage [1,2].

Various methods have been developed for
detecting pipeline leaks, including the use of
ultrasonic sensors, thermal cameras, and infrared
cameras. Ultrasonic sensors detect changes in
acoustic signals within the pipeline but face
limitations due to physical access constraints and
environmental noise interference [3]. Thermal
cameras identify variations in surface temperature,
although their effectiveness can be compromised
by environmental conditions and variations in
ambient temperature [4]. Infrared cameras are
particularly notable for their ability to detect
temperature differences with high sensitivity
without direct contact. These cameras capture
emitted infrared radiation and convert it into
visible images, enabling the detection of thermal
anomalies that may indicate leaks [5].
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Infrared cameras operate by detecting thermal
radiation emitted by all objects above absolute
zero. This radiation is captured by sensors within
the camera and converted into a visible image that
represents the thermal distribution of the observed
objects. The main advantage of infrared cameras is
their ability to perform inspections without physical
contact and in low-visibility conditions. However,
these cameras can be expensive and require precise
calibration to ensure measurement accuracy [1,2].

To analyze and classify images captured by
infrared cameras, advanced image processing
techniques and machine learning algorithms
are employed. Traditional image processing
techniques may include filtering to enhance
specific features and segmentation to isolate
areas of interest. Machine learning algorithms,
particularly Convolutional Neural Networks
(CNNgs), are widely used to recognize patterns and
detect anomalies in thermal images [4]. Recent
advancements in deep learning have shown
significant improvements in the automatic and
accurate detection of leaks. These methods involve
training models with extensive datasets of infrared
images, enabling efficient differentiation between
leaks and other thermal characteristics [3,5].

The work presented by Xie and colleagues
[6] introduces an innovative automated leakage
detection method that combines infrared
thermography (IRT) with the Faster R-CNN object
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detection technique. This methodology utilizes a
modified VGG16 network for feature extraction,
allowing for the detection of finer leakage features
and details in the original infrared images. The
study reports high performance metrics, with mean
Average Precisions (mAPs) of 1.00, 0.98, and 0.99
for detecting leaks at pipes, valves, and flanges,
respectively, under various leakage scenarios.
The results demonstrate that the proposed system
is both practical and robust, maintaining high
detection accuracy even in complex backgrounds
and diverse operational conditions, such as
varying ambient light, changes in camera angles,
and pedestrian interference.

In this study, we propose a similar pipeline leak
detection system of Xieand colleagues[6]. However,
we use an infrared camera that does not natively
measure temperature. Our objective is to assess
whether this non-temperature-measuring infrared
camera can achieve comparable performance to
the system described by Xie and colleagues [6].
By evaluating this alternative approach, we aim
to determine its effectiveness in real-world leak
detection scenarios and contribute to the broader
application of infrared imaging technologies in
pipeline monitoring. This investigation will provide
insights into the feasibility and performance of
using non-temperature-sensitive infrared cameras
for detecting pipeline leaks, further advancing the
field of automated pipeline monitoring and safety.

Materials and Methods

This study presents the development and
validation ofaconvolutional neural network (CNN)
for detecting leaks in images. The method covers
the experimental setup description and model
training details, divided into data preparation,
model architecture, training procedures, and
performance evaluation in detail.

Model Training

The dataset consists of images organized
into 'leak’ and 'moleak' categories. Each image is

resized to 224x224 pixels and normalized to a [0,
1] range to standardize input features. Labels are
encoded as binary values, with "0" for 'noleak' and
'1° for 'leak'. To ensure balanced representation,
the data is split into training and validation sets
using stratified sampling, which preserves the
proportion of each class.

The model utilizes the VGG16 architecture,
a well-known CNN pre-trained on the ImageNet
dataset. The base model, which includes multiple
convolutional layers followed by max-pooling
layers, is used as a feature extractor by excluding
its top classification layer. The extracted feature
maps are processed by a custom classification
head designed as follows:
 Flattening Layer: Converts the 2D feature maps

into a 1D vector.
* Dense Layer: A fully connected layer with 512

units and ReL.U activation, described by

ReLU (x) = ma x(0,x) (D)

where x is the input to the layer.

* Dropout Layer: Applied with a rate of 0.5 to
reduce overfitting by randomly setting half of
the neurons to zero during training.

* Output Dense Layer: A single unit with sigmoid
activation, which outputs a probability p for the
binary classification:
where x is the input to the sigmoid function.

2

The model is compiled using the Adam
optimizer, which adjusts the learning rate
adaptively based on estimates of first and second
moments of the gradients. The learning rate is
set to (1 x 107*). Adam is defined by the under
rule:

o) = 1+e™™

(04
Brr1 =6 — mmt 3)
where (0t) is the parameter, (a) is the learning
rate, (mt) and (vt) are estimates of the first and
second moments of the gradients, respectively,
and (e) is a small constant for numerical stability.
Binary cross-entropy is used as the loss function,
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which measures the difference between the
accurate labels y and the predicted probabilities p:

Loss = —(ylog(p) + (1 —y) log(1 — p)) (2)

The model is trained for ten epochs with a
batch size of 32. During training, the model's
performance is monitored using accuracy and loss
metrics, and training progress is recorded with a
CSV logger. The average inference time per image
is calculated to assess computational efficiency.

Experiment Setup (Figure 1)

To experiment, it was essential to establish a
system capable of simulating a fluid leak in a pipe.
The experimental setup comprised a cyclical water
system utilizing an aquarium pump connected to
a PVC pipe. The water transported by the pump
traverses the pipe and is subsequently returned
to the same receptacle as the pump, thereby
completing the cycle. The water was heated using
a portable electric heater/blower, thus enabling the
camera to identify thermal variations in the fluid in
relation to the pipe. Two distinct PVC pipes were
used: one with an aperture to simulate the leak
and one without, serving as a control. Data was
collected using an FLIR ADK camera, which was
connected to a computer running a Python script.
This script was programmed to take pictures at
100-millisecond intervals, capturing thermal
images of the pipe and allowing for a detailed
analysis of the fluid conditions and identification
of the simulated leak.

Figure 1. Technical setup drawing.
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Results and Discussion

The model's performance was comprehensively
evaluated using several metrics, including accuracy,
loss, confusion matrix, and the Receiver Operating
Characteristic (ROC) curve. The following analysis
provides a detailed examination of each metric,
offering insights into the model's performance.

Figure 2 presents the training and validation
accuracy over the course of the epochs. The
training accuracy increased from 52.5% in the first
epoch to 100% by the final epoch, indicating that
the model effectively learned from the training
data. Similarly, the wvalidation accuracy also
reached 100% towards the end of the training,
suggesting that the model generalized well to
the unseen validation data. This high accuracy
is indicative of the model's strong performance;
however, achieving 100% accuracy may also raise
concerns about potential overfitting. It is crucial to
ensure that the training and validation datasets are
sufficiently diverse to mitigate this risk.

The model's performance was comprehensively
evaluated using several metrics, including
accuracy, loss, confusion matrix, and the Receiver
Operating Characteristic (ROC) curve. The
following analysis provides a detailed examination
of each metric and offers insights into the model's
performance.

Figure 2 presents the training and validation
accuracy over the course of the epochs. The
training accuracy increased from 52.5% in the first
epoch to 100% by the final epoch, indicating that
the model effectively learned from the training
data. Similarly, the wvalidation accuracy also
reached 100% towards the end of the training,
suggesting that the model generalized well to
the unseen validation data. This high accuracy
is indicative of the model's strong performance;
however, achieving 100% accuracy may also raise
concerns about potential overfitting. It is crucial to
ensure that the training and validation datasets are
sufficiently diverse to mitigate this risk.

Figure 3 illustrates the training and validation
loss over the epochs. The training loss decreased
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Figure 2. Training and validation accuracy.

Model Accuracy

1.0
0.9
3 0.8
o
>
3
< 07
0.6
—— Training
— Validation
0 2 4 6 8
Epoch
Figure 3. Training and validation loss.
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significantly from 0.82 to 0.00188, while

the validation loss dropped from 0.6775 to
0.0001258. This steady reduction in loss values
indicates that the model improved consistently
throughout the training process and maintained
its performance on the validation set. The near-
zero loss values for both training and validation
phases underscore the model's effectiveness
in minimizing error, although it is important
to remain cautious about potential overfitting.

The confusion matrix shown in Figure 4 reveals a
perfect classification result, with no false positives
or false negatives. This matrix indicates that the
model accurately identified all positive and negative
cases, highlighting its reliability in distinguishing
between classes. The absence of misclassifications
reflects the model’s high precision and effectiveness
in the classification task.

Figure 4 shows the matrix with no
misclassifications, reflecting the model’s high
accuracy in predicting the correct class for each
sample.

Figure 5 presents the Receiver Operating
Characteristic (ROC) curve, which demonstrates
an Areca Under the Curve (AUC) of 1.0. This
perfect AUC indicates that the model has an
exceptional ability to discriminate between
positive and negative cases. The ROC curve
reinforces the findings from the confusion
matrix, showcasing the model’s excellent
performance in detecting the target class with an
actual positive rate of 1.0 and no false positives.
The results from the accuracy, loss, confusion
matrix, and ROC curve collectively suggest that
the model performs exceptionally well in detecting
pipeline leaks. The high accuracy and low loss
values indicate practical training and strong
generalization capabilities. The perfect confusion
matrix and ROC AUC further validate the model's
robustness and reliability in classification tasks.

The results from the accuracy, loss, confusion
matrix, and ROC curve collectively suggest that
the model performs exceptionally well in detecting
pipeline leaks. The high accuracy and low loss
values indicate practical training and strong
generalization capabilities. The perfect confusion
matrix and ROC AUC further validate the model's
robustness and reliability in classification tasks.
Despite these positive results, it is important to
consider the potential for overfitting, as indicated
by the perfect performance across all metrics.
Future work should involve evaluating the model
on more diverse and realistic datasets to ensure
its generalizability and effectiveness in real-world
scenarios.
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Figure 4. Confusion matrix.
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Figure 5. ROC curve.
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Conclusion

This study evaluated a pipeline leak detection
system that utilizes infrared thermography in
conjunction with advanced machine learning
techniques. Adapting a method based ona VGG16-
based Faster R-CNNapproach, wetestedaninfrared
camera that does not natively measure temperature
to see if it could achieve comparable performance.
The model performed exceptionally well, reaching
100% accuracy and showing no misclassifications,
as confirmed by the ROC curve's AUC of
1.0. However, perfect accuracy suggests potential
overfitting, indicating a need for further validation
on more diverse datasets. The performance of this
model has achieved better results than those shown
in Xie and colleagues [6]. However, it is necessary
to consider that this work has been tested only
in a laboratory in one single pipeline; the work
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developed in Xie and colleagues [6] was tested
in an environment more similar to an operational
system and has more complex structures.

While our findings are promising, future
research should focus on testing the model in
more complex environments, improving model
robustness against overfitting, and exploring
alternative infrared cameras that might enhance
detection accuracy. Additionally, implementing
the model in real-time systems and conducting
comparative analyses with other leak detection
methods will help to assess its real-world
applicability and identify areas for improvement.
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