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Computational Model to Optimize the Prediction of Fouling in the Deposition Process During Oil
Pre-Processing in Heat Exchanger Networks Based on Machine Learning
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ISENAI CIMATEC University, Salvador, Bahia, Brazil

The accumulation of deposits in heat exchangers during oil pre-processing, known as fouling, is a reality in the oil
and gas industry. This deposition, caused by the presence of suspended solids, organic, and mineral compounds,
compromises the thermal and hydraulic efficiency of heat exchangers, resulting in less efficient operations and
increased maintenance and energy costs. The implementation of predictive computational models aims to ensure
the functioning of heat exchangers and is essential for maintaining refinery operations. The objective of this work
was to analyze models for managing deposition in heat exchangers during oil pre-processing, in order to maximize
operational efficiency and minimize costs associated with maintenance and energy, using Artificial Intelligence with
machine learning models capable of processing sequential data, which is particularly useful in deposition processes
that evolve, as in the network of heat exchangers used in oil pre-processing. The computational models were
developed using historical measurement data from a network of 25 heat exchangers at a refinery in southeastern
Brazil, spanning from September 1, 2014, to July 25, 2021, and comprising a total of 57,225 records stored in a
CSV (Comma-Separated Values) file. For prediction, the independent variables were the operating parameters
of the exchangers, and as dependent variables, the fouling factor (Rfs), which quantifies the resistance to thermal
exchange due to deposition. The prediction models were evaluated based on error metrics, and the DNN (Deep
Neural Network) model presented MSE (Mean Squared Error) of 0.01835, RMSE (Root Mean Squared Error) of
0.13549, MAE (Mean Absolute Error) of 0.10743, and R? (Coefficient of Determination) of 0.3049. The LSTM (Long
Short-Term Memory) model presented MSE of 0.01863, RMSE of 0.13649, MAE of 0.10895, and R? of 0.29458.
The Hybrid Model presented an MSE of 0.01856, an RMSE of 0.13624, an MAE of 0.10663, and an R? of 0.29720.
We concluded that predicting the deposition coefficient is critical for operational planning. Computational fouling
prediction models can be utilized to minimize costs and risks in the heat exchanger network during oil pre-

processing, offering an efficient approach to process optimization.
Keywords: Modeling. Fouling. Heat Exchangers. Machine Learning. Optimization.

Oil pre-processing faces a series of complex
challenges, reflecting the complexity and
sensitivity of the process, as well as increasingly
strict regulatory compliance requirements and
environmental pressures. Among the main
challenges is the considerable variation in the
quality of crude oil from different sources and
reservoirs [1]. This variability encompasses a wide
range of physical and chemical characteristics,
including sulfur content, density, viscosity, heavy
metal content, and hydrocarbon composition,
necessitating the development of flexible pre-
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processing strategies that can accommodate these
variations [2].

The oil and gas industry extensively utilizes
shell-and-tube heat exchangers, primarily due to
their ability to operate under high pressures and
temperatures. These heat exchangers are employed
to exchange heat between fluids at different
temperatures without direct contact. In oil pre-
processing, shell-and-tube heat exchangers are used
before crude oil refining, as crude oil undergoes
desalination and dehydration processes to remove
water and dissolved salts that can cause corrosion
or deposit formation in processing units. Heat
exchangers are used to heat the crude oil before
these processes, facilitating the separation of water
and salts.

Fouling in heat exchangers is an undesirable
phenomenon that can reduce heat transfer efficiency
and lead to corrosion and premature equipment
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failure [3], contributing to the loss of primary energy,
particularly in refineries, which accounts for up to
2% of total energy consumption [4]. To improve
the performance and efficiency of heat exchangers,
it is crucial to control and mitigate fouling through
strategies such as periodic cleaning, chemical
treatments, and the selection of appropriate
materials and designs [5]. Modeling fouling in
heat exchangers is crucial for understanding and
predicting the deposition phenomenon, which can
significantly impact equipment performance and
efficiency [6].

An efficient way to determine when cleaning
shutdowns are necessary is through the use of
Artificial Neural Networks (ANNs), which are
computational techniques for mathematical
modeling based on the human brain, capable of
solving both simple and complex problems. For
this, it is necessary to monitor fouling in a heat
exchanger by training Artificial Neural Networks
and testing the types of strategies and structures
that best perform the simulation for this system [7].

Materials and Methods

The elaboration of this work was organized
according to the flowchart illustrated in Figure
1. The selection of these variables is based on
case studies in refineries, where historical data
indicate strong statistical correlations between heat
transfer coefficients, flow rates, and inlet/outlet
temperatures and the actual fouling levels measured
in the field [8]. In general, it is recommended to
continuously monitor such variables to allow
machine learning algorithms to wupdate their
deposition predictions, incorporating possible
regime changes and unexpected oscillations.
The output variable Rf (Fouling Factor) is a
leading indicator of deposit accumulation over
time in shell-and-tube heat exchangers. The dataset
creation process involved information from an oil
refinery in southeastern Brazil, where a network of
heat exchangers consists of seven branches (A, B,
C, D, E, F, and G), comprising a total of 25 shell-
and-tube exchangers. The data, obtained under

confidentiality, included operational measurements
collected between September 1, 2014, and July 25,
2021, totaling 57,225 records. These measurements
include variables such as inlet and outlet
temperatures, flow rates of hot and cold fluids,
global heat transfer coefficients of the hot and cold
fluids in operation, and, as the dependent variable,
the deposition coefficient (Rf), which quantifies the
resistance to deposition.

The pre-processing stage was designed to ensure
the consistency and adequacy of the data before
being provided to the prediction model. Initially, the
.csv file containing the dataset was read, gathering
the variables relevant to the performance of the
heat exchangers, such as temperatures and flow
rates, among other operational information, in a
DataFrame. This type of data structure, commonly
used in analysis applications, stores information
in a tabular format with clearly identified rows
and columns, which facilitates the manipulation,
querying, and processing of recorded values.
After reading, inconsistent values were removed.
First, rows whose Rf attribute showed values less
than or equal to zero were excluded, as they were
interpreted as measurements outside the operational
range or registration errors.

The training and testing split aimed to create
two datasets: one for model training and another
for evaluation, ensuring that performance would
be measured reliably. Before this split, it was
essential to define which variables would compose
the inputs (X) and which would be the target
variable (y). In this study, the Rf attribute was set
as the reference column for y. In contrast, the other
columns formed X. This distinction oriented the
learning process exclusively toward the parameter
of most significant interest (the target variable),
while keeping all other parameters as predictors.

With this structure defined, data scaling
was performed. Initially, the MinMaxScaler
was applied, converting attribute values to
the 0—1 interval. This transformation reduced
adverse effects caused by drastic differences in
magnitude between variables while preserving
proportionality. Thus, both the predictor variables
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Figure 1. Flowchart of the project method.
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and the target variable were rescaled, promoting
a more uniform distribution of inputs and the
predicted value. Next, the StandardScaler was
applied to center the data around a mean of zero
with a variance of one. This dual scaling approach
stabilized the neural network optimization
process, improving performance and convergence
during training. After scaling, the dataset was split

Attention layer
Dense layers

Output layer

into training (80% of the observations) and testing
(20%) for final evaluation.

Definition of the Architeture

This section describes the three neural network
architectures proposed for the prediction problem
under study. The choice of multiple models allowed
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comparisons between different configurations of
layers and neuron counts, seeking to understand
the impact of these variations on final performance.
DNN Model.

The first model followed the architecture of a
Deep Neural Network (DNN), comprising two
hidden dense layers and a linear output layer. At the
input layer, the number of neurons corresponded to
the input variables defined during pre-processing.

The first hidden layer consisted of 64 neurons,
utilizing the ReLU activation function. This
quantity strikes a balance between representation
capacity and the risk of overfitting, offering
sufficient complexity for regression problems
with a moderate number of input dimensions. A
Dropout layer was then added, randomly zeroing a

Figure 2. DNN summary.
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The second hidden layer, with 32 neurons
(utilizing ReLU activation), gradually reduced
dimensionality, contributing to the extraction
of hierarchical patterns and preventing learning
overload. Another Dropout layer is used to further
mitigate overfitting. Finally, the output layer had a
single neuron with linear activation, reflecting the
continuous nature of the target variable (Rf).

LSTM Model

The second model (Figure 3) adopted an
LSTM (Long Short-Term Memory) architecture
to handle temporal or sequential aspects of
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the data. It also included Batch Normalization
layers and additional Dropout layers, increasing
depth and the ability to extract complex patterns.
The first layer was an LSTM with 64 units,
responsible  for capturing initial temporal
dependencies. A Batch Normalization layer was
then applied to stabilize activations and gradients,
followed by Dropout to reduce overfitting.
The second LSTM layer, with 32 units, extracted
deeper temporal features at a more condensed
representation level. Again, Batch Normalization
and Dropout followed. After these two recurrent
layers, a dense layer with 16 neurons refined the
aggregated information and prepared the regression
model. The output layer consisted of a single
neuron, providing the predicted continuous value.
This architecture totaled 33,057 parameters
(32,865 trainable and 192 non-trainable, mainly
normalization parameters), highlighting increased
complexity compared to the DNN.

Figure 4. Hybrid model summary.
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The third model incorporated multiple
LSTM layers, normalization mechanisms,
and an Attention module to capture subtler
interactions between input variables. Unlike
previous models, this architecture employs
two sequential LSTM layers (with 64 and 32
units, respectively), each followed by Batch
Normalization and Dropout. Then, an Attention
block emphasized relevant temporal patterns.
The attention output was concatenated with the
output of the previous layer, forming a richer
contextual vector. A dense layer with 16 neurons
refined this representation, followed by Dropout,
and another dense layer with eight neurons.
The final linear output layer predicted Rf.
This model had 33,697 parameters (33,505 of
which were trainable), demonstrating greater
depth and complexity than the previous models.
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Results and Discussion

Before prediction modeling, an exploratory
analysis of the fouling coefficient (Rf) was
performed. The histogram (Figure 5) showed that
most Rf values ranged from 60 to 80, indicating
moderate to high levels of fouling. Lower
concentrations (10-20) were less frequent, while
extreme values near 90 suggested occasional severe
fouling episodes.

The sequential plot (Figure 6) displayed
oscillations, with Rf occasionally exceeding 80 or
dropping below 30. Sharp declines (e.g., around
observation 2000) may indicate cleaning or
maintenance events, or abrupt operational changes.

Figure 5. Distribution of Rf variable.

These analyses confirmed Rf’s dynamic behavior,
characterized by oscillations and a concentration
range of moderate to high levels. Models thus needed
to handle frequent variations and sudden peaks.

The results of the models were:
DNN Model: MSE = 0.01835; RMSE =
0.13549; MAE = 0.10743; R? = 0.3049.
LSTM Model: MSE = 0.01863; RMSE =
0.13649; MAE = 0.10895; R? = 0.29458.

Hybrid Model: MSE = 0.01856; RMSE = 0.13624;
MAE = 0.10663; R* = 0.29720.

The DNN showed the best performance, with
lower error metrics and greater training stability,
while the LSTM exhibited instability. The Hybrid
model performed better than the other two.
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Conclusion

The reasonable agreement between actual
and predicted values confirmed the feasibility of
these models for practical applications. Predictive
modeling can significantly enhance operational
efficiency and lower maintenance and energy costs
in refineries.

The comparison revealed that the DNN was more
robust, with a lower MSE and more stable training,
whereas the LSTM encountered generalization
challenges. The Hybrid model improved
representation, but with slightly higher complexity.
These findings highlight the importance of carefully
selecting deep learning models and tuning their
hyperparameters for accurate industrial fouling
prediction. Personalized Al solutions tailored
to specific contexts and data characteristics are
essential for reliability.
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