
www.jbth.com.br

363

Received on 28 May 2025; revised 31 July 2025.
Address for correspondence: Adroaldo Soares. Av. Orlando 
Gomes, 1845 - Piatã, Salvador – BA – Brazil, Zip Code: 
41650-010. E-mail: adroaldo.soares@ba.estudante.senai.br. 
Original extended abstract presented at SAPCT 2025.

J Bioeng. Tech. Health	                            2025;8(4):363-369
© 2025 by SENAI CIMATEC University. All rights reserved.

Computational Model to Optimize the Prediction of Fouling in the Deposition Process During Oil 
Pre-Processing in Heat Exchanger Networks Based on Machine Learning

Adroaldo Soares1*, Marcelo Albano Moret1, Oberdan Pinheiro1, Fernando Luiz Pellegrini Pessoa1
1SENAI CIMATEC University; Salvador, Bahia, Brazil

 
The accumulation of deposits in heat exchangers during oil pre-processing, known as fouling, is a reality in the oil 
and gas industry. This deposition, caused by the presence of suspended solids, organic, and mineral compounds, 
compromises the thermal and hydraulic efficiency of heat exchangers, resulting in less efficient operations and 
increased maintenance and energy costs. The implementation of predictive computational models aims to ensure 
the functioning of heat exchangers and is essential for maintaining refinery operations. The objective of this work 
was to analyze models for managing deposition in heat exchangers during oil pre-processing, in order to maximize 
operational efficiency and minimize costs associated with maintenance and energy, using Artificial Intelligence with 
machine learning models capable of processing sequential data, which is particularly useful in deposition processes 
that evolve, as in the network of heat exchangers used in oil pre-processing. The computational models were 
developed using historical measurement data from a network of 25 heat exchangers at a refinery in southeastern 
Brazil, spanning from September 1, 2014, to July 25, 2021, and comprising a total of 57,225 records stored in a 
CSV (Comma-Separated Values) file. For prediction, the independent variables were the operating parameters 
of the exchangers, and as dependent variables, the fouling factor (Rfs), which quantifies the resistance to thermal 
exchange due to deposition. The prediction models were evaluated based on error metrics, and the DNN (Deep 
Neural Network) model presented MSE (Mean Squared Error) of 0.01835, RMSE (Root Mean Squared Error) of 
0.13549, MAE (Mean Absolute Error) of 0.10743, and R² (Coefficient of Determination) of 0.3049. The LSTM (Long 
Short-Term Memory) model presented MSE of 0.01863, RMSE of 0.13649, MAE of 0.10895, and R² of 0.29458. 
The Hybrid Model presented an MSE of 0.01856, an RMSE of 0.13624, an MAE of 0.10663, and an R² of 0.29720. 
We concluded that predicting the deposition coefficient is critical for operational planning. Computational fouling 
prediction models can be utilized to minimize costs and risks in the heat exchanger network during oil pre-
processing, offering an efficient approach to process optimization.
Keywords: Modeling. Fouling. Heat Exchangers. Machine Learning. Optimization.

Oil pre-processing faces a series of complex 
challenges, reflecting the complexity and 
sensitivity of the process, as well as increasingly 
strict regulatory compliance requirements and 
environmental pressures. Among the main 
challenges is the considerable variation in the 
quality of crude oil from different sources and 
reservoirs [1]. This variability encompasses a wide 
range of physical and chemical characteristics, 
including sulfur content, density, viscosity, heavy 
metal content, and hydrocarbon composition, 
necessitating the development of flexible pre-

processing strategies that can accommodate these 
variations [2].

The oil and gas industry extensively utilizes 
shell-and-tube heat exchangers, primarily due to 
their ability to operate under high pressures and 
temperatures. These heat exchangers are employed 
to exchange heat between fluids at different 
temperatures without direct contact. In oil pre-
processing, shell-and-tube heat exchangers are used 
before crude oil refining, as crude oil undergoes 
desalination and dehydration processes to remove 
water and dissolved salts that can cause corrosion 
or deposit formation in processing units. Heat 
exchangers are used to heat the crude oil before 
these processes, facilitating the separation of water 
and salts.

Fouling in heat exchangers is an undesirable 
phenomenon that can reduce heat transfer efficiency 
and lead to corrosion and premature equipment 
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failure [3], contributing to the loss of primary energy, 
particularly in refineries, which accounts for up to 
2% of total energy consumption [4]. To improve 
the performance and efficiency of heat exchangers, 
it is crucial to control and mitigate fouling through 
strategies such as periodic cleaning, chemical 
treatments, and the selection of appropriate 
materials and designs [5]. Modeling fouling in 
heat exchangers is crucial for understanding and 
predicting the deposition phenomenon, which can 
significantly impact equipment performance and 
efficiency [6].

An efficient way to determine when cleaning 
shutdowns are necessary is through the use of 
Artificial Neural Networks (ANNs), which are 
computational techniques for mathematical 
modeling based on the human brain, capable of 
solving both simple and complex problems. For 
this, it is necessary to monitor fouling in a heat 
exchanger by training Artificial Neural Networks 
and testing the types of strategies and structures 
that best perform the simulation for this system [7].

 
Materials and Methods

The elaboration of this work was organized 
according to the flowchart illustrated in Figure 
1. The selection of these variables is based on 
case studies in refineries, where historical data 
indicate strong statistical correlations between heat 
transfer coefficients, flow rates, and inlet/outlet 
temperatures and the actual fouling levels measured 
in the field [8]. In general, it is recommended to 
continuously monitor such variables to allow 
machine learning algorithms to update their 
deposition predictions, incorporating possible 
regime changes and unexpected oscillations. 
The output variable Rf (Fouling Factor) is a 
leading indicator of deposit accumulation over 
time in shell-and-tube heat exchangers. The dataset 
creation process involved information from an oil 
refinery in southeastern Brazil, where a network of 
heat exchangers consists of seven branches (A, B, 
C, D, E, F, and G), comprising a total of 25 shell-
and-tube exchangers. The data, obtained under 

confidentiality, included operational measurements 
collected between September 1, 2014, and July 25, 
2021, totaling 57,225 records. These measurements 
include variables such as inlet and outlet 
temperatures, flow rates of hot and cold fluids, 
global heat transfer coefficients of the hot and cold 
fluids in operation, and, as the dependent variable, 
the deposition coefficient (Rf), which quantifies the 
resistance to deposition.

The pre-processing stage was designed to ensure 
the consistency and adequacy of the data before 
being provided to the prediction model. Initially, the 
.csv file containing the dataset was read, gathering 
the variables relevant to the performance of the 
heat exchangers, such as temperatures and flow 
rates, among other operational information, in a 
DataFrame. This type of data structure, commonly 
used in analysis applications, stores information 
in a tabular format with clearly identified rows 
and columns, which facilitates the manipulation, 
querying, and processing of recorded values. 
After reading, inconsistent values were removed. 
First, rows whose Rf attribute showed values less 
than or equal to zero were excluded, as they were 
interpreted as measurements outside the operational 
range or registration errors.

The training and testing split aimed to create 
two datasets: one for model training and another 
for evaluation, ensuring that performance would 
be measured reliably. Before this split, it was 
essential to define which variables would compose 
the inputs (X) and which would be the target 
variable (y). In this study, the Rf attribute was set 
as the reference column for y. In contrast, the other 
columns formed X. This distinction oriented the 
learning process exclusively toward the parameter 
of most significant interest (the target variable), 
while keeping all other parameters as predictors.

With this structure defined, data scaling 
was performed. Initially, the MinMaxScaler 
was applied, converting attribute values to 
the 0–1 interval. This transformation reduced 
adverse effects caused by drastic differences in 
magnitude between variables while preserving 
proportionality.Thus, both the predictor variables 
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Figure 1. Flowchart of the project method.

and the target variable were rescaled, promoting 
a more uniform distribution of inputs and the 
predicted value. Next, the StandardScaler was 
applied to center the data around a mean of zero 
with a variance of one. This dual scaling approach 
stabilized the neural network optimization 
process, improving performance and convergence 
during training. After scaling, the dataset was split 

into training (80% of the observations) and testing 
(20%) for final evaluation.

Definition of the Architeture

This section describes the three neural network 
architectures proposed for the prediction problem 
under study. The choice of multiple models allowed 
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comparisons between different configurations of 
layers and neuron counts, seeking to understand 
the impact of these variations on final performance. 
DNN Model.

The first model followed the architecture of a 
Deep Neural Network (DNN), comprising two 
hidden dense layers and a linear output layer. At the 
input layer, the number of neurons corresponded to 
the input variables defined during pre-processing.

The first hidden layer consisted of 64 neurons, 
utilizing the ReLU activation function. This 
quantity strikes a balance between representation 
capacity and the risk of overfitting, offering 
sufficient complexity for regression problems 
with a moderate number of input dimensions. A 
Dropout layer was then added, randomly zeroing a 

fraction of connections during training to promote 
regularization.

The second hidden layer, with 32 neurons 
(utilizing ReLU activation), gradually reduced 
dimensionality, contributing to the extraction 
of hierarchical patterns and preventing learning 
overload. Another Dropout layer is used to further 
mitigate overfitting. Finally, the output layer had a 
single neuron with linear activation, reflecting the 
continuous nature of the target variable (Rf).

 
LSTM Model

The second model (Figure 3) adopted an 
LSTM (Long Short-Term Memory) architecture 
to handle temporal or sequential aspects of 

Figure 2. DNN summary.

Figure 3. LSTM summary.
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Figure 4. Hybrid model summary.

the data. It also included Batch Normalization 
layers and additional Dropout layers, increasing 
depth and the ability to extract complex patterns. 
The first layer was an LSTM with 64 units, 
responsible for capturing initial temporal 
dependencies. A Batch Normalization layer was 
then applied to stabilize activations and gradients, 
followed by Dropout to reduce overfitting. 
The second LSTM layer, with 32 units, extracted 
deeper temporal features at a more condensed 
representation level. Again, Batch Normalization 
and Dropout followed. After these two recurrent 
layers, a dense layer with 16 neurons refined the 
aggregated information and prepared the regression 
model. The output layer consisted of a single 
neuron, providing the predicted continuous value. 
This architecture totaled 33,057 parameters 
(32,865 trainable and 192 non-trainable, mainly 
normalization parameters), highlighting increased 
complexity compared to the DNN.

 

Hybrid Model

The third model incorporated multiple 
LSTM layers, normalization mechanisms, 
and an Attention module to capture subtler 
interactions between input variables. Unlike 
previous models, this architecture employs 
two sequential LSTM layers (with 64 and 32 
units, respectively), each followed by Batch 
Normalization and Dropout. Then, an Attention 
block emphasized relevant temporal patterns. 
The attention output was concatenated with the 
output of the previous layer, forming a richer 
contextual vector. A dense layer with 16 neurons 
refined this representation, followed by Dropout, 
and another dense layer with eight neurons. 
The final linear output layer predicted Rf. 
This model had 33,697 parameters (33,505 of 
which were trainable), demonstrating greater 
depth and complexity than the previous models.
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Results and Discussion

Before prediction modeling, an exploratory 
analysis of the fouling coefficient (Rf) was 
performed. The histogram (Figure 5) showed that 
most Rf values ranged from 60 to 80, indicating 
moderate to high levels of fouling. Lower 
concentrations (10–20) were less frequent, while 
extreme values near 90 suggested occasional severe 
fouling episodes.

The sequential plot (Figure 6) displayed 
oscillations, with Rf occasionally exceeding 80 or 
dropping below 30. Sharp declines (e.g., around 
observation 2000) may indicate cleaning or 
maintenance events, or abrupt operational changes.

Figure 5. Distribution of Rf variable.

Figure 6. Evolution of Rf variable.

These analyses confirmed Rf’s dynamic behavior, 
characterized by oscillations and a concentration 
range of moderate to high levels. Models thus needed 
to handle frequent variations and sudden peaks.

The results of the models were: 
DNN Model: MSE = 0.01835; RMSE = 
0.13549; MAE = 0.10743; R² = 0.3049. 
LSTM Model: MSE = 0.01863; RMSE = 
0.13649; MAE = 0.10895; R² = 0.29458. 
Hybrid Model: MSE = 0.01856; RMSE = 0.13624; 
MAE = 0.10663; R² = 0.29720.

The DNN showed the best performance, with 
lower error metrics and greater training stability, 
while the LSTM exhibited instability. The Hybrid 
model performed better than the other two.
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Conclusion

The reasonable agreement between actual 
and predicted values confirmed the feasibility of 
these models for practical applications. Predictive 
modeling can significantly enhance operational 
efficiency and lower maintenance and energy costs 
in refineries.

The comparison revealed that the DNN was more 
robust, with a lower MSE and more stable training, 
whereas the LSTM encountered generalization 
challenges. The Hybrid model improved 
representation, but with slightly higher complexity. 
These findings highlight the importance of carefully 
selecting deep learning models and tuning their 
hyperparameters for accurate industrial fouling 
prediction. Personalized AI solutions tailored 
to specific contexts and data characteristics are 
essential for reliability.
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