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Image-Based Underwater Liquid Leak Detection and Transfer Learning
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This paper addresses the critical challenge of liquid leaks in the oil and gas industry by leveraging advanced 
computer vision and deep learning methodologies. The objective is to develop practical models for detecting 
underwater objects with low image quality in adverse conditions. We train and test CNN detectors using Facebook's 
Detectron2 Faster R-CNN. The model was evaluated on a custom dataset of underwater oil spill videos, focusing 
on detection accuracy and processing speed. The results demonstrated that even using images of smoke in the 
sky as training made it possible to detect the underwater oil leak accurately.
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The offshore oil and gas industry is one of the 
most profitable industries in the world. However, 
due to the nature of its deep subsea operations, these 
industries could face some issues, such as safety 
concerns and environmental impact. Such issues 
can directly impact enterprise profit and generate 
life risk. Machinery fluid and crude oil leakages 
are examples of issues that can affect the external 
environment and normal operation conditions. 
Several studies have tried to address the task of 
underwater leakage detection.

Most of them use acoustic sensors, fluorimeters, 
and vibration sensors to obtain the data post-
processed by a machine or deep learning algorithm 
to extract and analyze patterns indicating the 
presence of leakages; these methods can be 
inaccurate and relatively expensive [1]. Underwater 
object detection is generally achieved by sonar, 
laser, and cameras. Compared to sonar and laser, 
the cameras are low-cost and can capture more 
visual information with high temporal and spatial 
resolution.

Our proposal in this work is to offer an accurate 
and cost-efficient solution for underwater leak 
detection using imaging and deep learning 
techniques. By incorporating the Faster Region-

based CNN (Faster R-CNN) [2] models, we aim to 
enhance the identification capability of liquid leaks 
in key infrastructure components. Harsh underwater 
environments negatively impact methods that rely 
on edge information by reducing object detection 
accuracy. Convolutional neural networks (CNNs) 
dominate current object detection research to 
improve detection speed and accuracy. CNN-based 
methods can be divided into two main categories: 
Region Proposal-Based Frameworks(two-stage) and 
Regression/Classification-Based Frameworks(one-
stage).

Object detection is one of the tasks of computer 
vision, where the goal is to recognize objects and 
locate them in an image. Deep learning models can 
recognize and extract information from images in 
challenging environments while simultaneously 
working with vast data.

Underwater object detection is generally 
achieved by sonar, laser, and cameras. Compared 
to sonar and laser, the cameras are low-cost and can 
capture more visual information with high temporal 
and spatial resolution. Underwater leak detection 
using deep learning is an active and rapidly evolving 
field of research, with some published studies on 
this topic, such as Bansod [3] that describe the use 
of thermal images to enhance leak identification by 
deep neural and Rehman [4] that address the topic 
of using sensor signals as input along with images 
to create an attention-based model.

Various studies have tried to solve the leakage 
detection task using object detectors. Going in the 
opposite direction, the paper written by Padovese 
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[5] uses a Passive Acoustic Monitoring (PAM) 
system for leakage detection on offshore CO2 
geological storages. It takes advantage of the signal 
disturbance caused by the emission of bubbles to 
classify the acoustic signal and detect gas leakage.

The main benefit of PAM use is the investment 
cost of sensor equipment and the extended range 
of the sensor. However, this system could not 
detect fluid leakage on offshore equipment located 
in the seabed. PAM sensors can be affected by 
other sources of signal (noise), which introduces 
complexity to the detection task. Beyond that, 
passive acoustic is mainly used in wildlife studies.

Traditional sensors face significant challenges 
in high-pressure environments, such as deep 
ocean ones. These sensors are not low-cost, and 
the detection complexity increases due to adverse 
conditions. Other works carried out research in leak 
detection underwater using deep learning based on 
pressure measurements, integration of surveillance 
thermal cameras, and sound and vibration sensors.

As a positive point, these techniques improve 
the data available for training deep learning models. 
From another perspective, using sensors can 
increase investment costs, in addition to the fact 
that these tools can be inaccurate and fail in specific 
scenarios of high pressure, such as deep water. 
The present study proposes an innovative solution 
based on deep learning and object detection using 
only underwater images, without the need for 
vibration, sound, or pressure sensors. This approach 
offers cost reduction and several advantages 
compared to related works. Using cameras and 
deep learning eliminates the need for expensive 
and sophisticated sensors, such as acoustic and 
pressure sensors, resulting in a significantly more 
economical solution. Deep learning models can 
quickly process large volumes of image data, 
enabling real-time or near-real-time leak detection, 
which is crucial for rapid interventions.

 
Materials and Methods

Next, we present deep-learning models utilized 
in our study, explain the training and test pipelines, 

and introduce an augmentation technique to 
overcome the lack of accurate data representing the 
underwater scenario with wildfire smoke.

Alternatively, images of wildfire smoke and 
crude oil leaking that share similar features to 
underwater leakage have become data to train 
the AI models. It is done because deep learning 
models require an extensive data set to achieve 
good results and generalization capabilities. Due to 
this lack of data, obtaining evaluation metrics with 
expressive results is a great challenge, especially 
in real scenarios.

The algorithms for object detection are based 
on supervised learning, which requires image 
samples with objects to be detected and their 
corresponding bounding boxes represented 
as labels. Similarly, the leak detection model 
needs videos or images of comparable liquid 
leaks in different scenarios for training. 
The wildfire smoke dataset, consisting of 737 
images and annotations, was used to train the 
models. This dataset was selected because it 
contains properties and characteristics like liquid 
leaks. It becomes a quick and cheap solution to 
overcome the lack of liquid leak data under the sea. 
Figure 1 shows a frame extracted from the dataset.

After preparing the source data by applying a set 
of transformations, the total number of images has 
been split into 3 groups: training, validation, and 
test. The first two are used during the learning stage 
of the deep neural network; the training set provides 
the data distribution from where the model will 
learn, while the validation one is used to check how 
well the model evolves its training. Once the training 
stage is finished, the model weights learned during 
this phase are used to make inferences on the test set 
to verify the model performance. Its performance 
is measured using a mean Average Precision 
mAP metric based on three metrics: Intersection-
over-Union (IoU), Recall, and Precision. 
The IoU role is to define if a predicted bounding 
box is a true positive or a false positive by defining 
a threshold. Boxes with IoU values that fall below 
that range are considered false, and the ones above 
are considered valid. Generally, the higher the IoU 
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threshold, the more challenging the detection task. 
IoU is computed by dividing the area of overlap by the 
total union area, subsequently, with the computation 
of false positives, true positives, and false negatives. 
Recall and Precision are measured. These metrics 
measure how well the model is to predict accurate 
positive samples and how precise the model 
detections are, respectively. So, the computed value 
of those two metrics is used to plot the precision-
recall curve from where the map will be calculated. 
Two proofs of concept (POC) were created where 
one used training only from the wildfire smoke 
dataset (Only smokesmoke) and another used 
(Transfer Learning) with the addition of underwater 
oil spill frames. Both POCs were evaluated on 
another set of underwater oil spill images (Figure 2).

 
Results and Discussion

The computer vision community created the 
mean average precision (mAP) metric to evaluate 
the efficiency of an object detection model and 
compare its performance against other models. 
A high Average Precision (AP) means the model 
has a low false negative rate and a low false 
positive rate. A false negative occurs when the 
model infers the object as a region that is part of 
the image's background. A false positive occurs 

when a background region is mistakenly identified 
as an object. The higher the map, the more accurate 
and with more excellent recall the model will be. 
Accuracy measures the proportion of correct samples 
predicted as positive (correct inference), that is, how 
often the model predicts correctly. Recall measures 
the proportion of positive samples obtained from 
the total existing samples, both samples that were 
correctly detected and those that were not detected. 
In other words, how many positive samples could 
the model find in the total number of existing 
predictions? In other words, the model predicted 
every time it should have predicted. The mAP 
combines precision and recall into a single metric. 
It measures how accurately the model identifies 
objects by comparing the predicted bounding boxes' 
Intersection over Union (IoU) with the ground 
truth bounding boxes. IoU values are calculated 
for a range of threshold values, from 0.5 to 0.95, 
with a step of 0.05. The Average Precision (AP) 
is then calculated from these IoU values, and the 
mAP value is the average AP value of all detected 
classes. A higher IoU value closer to 1 indicates 
better detection quality (Table 1).

In Figure 3, we present underwater leak 
detection results for different implementations 
of the POCs carried out on the same custom test 
dataset. In machine learning, specifically statistical 

Figure 1. Sample of wildfire smoke frame.
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Figure 2. Sample of oil spill frame used in transfer learning model train.

Table 1. mAP values for the developed POCs.

Model mAP 50 mAP 50-95 
Transfer Learning 91.41 31.28
Only Smoke 13.09 2.89

Figure 3. Confusion matrix to compare prediction results.
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classification, a confusion matrix, also known as an 
error matrix, is a specific table layout that allows 
visualization of the performance of an algorithm, 
typically supervised learning. Each row of the 
matrix represents the instances in an actual class, 
while each column represents the instances in a 
predicted class, or vice versa. View the confusion 
matrices of the most promising POCs in Figure 3.

These results in Figure 4 suggest that the 
TRANSFER LEARNING model outperforms the 
ONLY SMOKE model in detecting oil leaks, mainly 
due to its high recall, indicating it captures most true 
leaks. TRANSFER LEARNING exhibits a higher 
precision (0.41) and a significantly higher recall 
(0.95) compared to ONLY SMOKE, resulting in a 
superior F1-Score (0.57 vs. 0.29). ONLY SMOKE 



www.jbth.com.br

54 JBTH 2025; (February)Underwater Liquid Leak Detection and Transfer Learning

has a considerably low precision (0.20), indicating 
a high number of false positives and a moderate 
recall (0.56).

The precision-recall curve presented illustrates 
the performance comparison between two 
models, Transfer Learning and Only Smoke 
in detecting oil leaks. The Transfer Learning 
model demonstrates superior performance in 
terms of precision across various levels of 
recall compared to the Only Smoke model. 
Figure 5 compares the detections with the models 

in a specific frame. This shows the efficiency and 
precision in generating the bounding boxes, mainly 
for the model frame trained with transfer learning. 
View all inference results in the drive.

 
Conclusion

In this study, we introduced an approach to 
underwater liquid leak detection using image-
based techniques and transfer learning. Our model 
significantly improved detection accuracy and 

Figure 4. Precision vs. Recall curves.

Figure 5. Detection for Transfer Learning model.
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Figure 6. Detection for Only Smoke model.

processing speed by leveraging Faster R-CNN 
and training on a custom dataset of underwater 
oil spill videos and wildfire smoke images. The 
transfer learning model outperformed the single-
source model, demonstrating superior precision and 
recall. This research highlights the potential of deep 
learning in providing cost-effective, efficient, and 
real-time leak detection solutions, offering a viable 
alternative to traditional, sensor-based methods.
Future work should focus on refining models and 
expanding datasets for enhanced robustness.
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