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In recent years, climate change has generated disturbances at both local and global scales, directly impacting the 
water temperature of rivers. Temperature fluctuations have become a common occurrence in river water, where 
after experiencing heating, the return to its natural temperature is gradual. Consequently, temperature changes 
affect various internal processes within rivers, including nutrient consumption, food availability, and dissolved 
oxygen concentration. These alterations subsequently impact the growth and distribution of aquatic organisms.
This article focuses on the physical variables derived from a model characterized by limited computational 
complexity. The final structure of the model consists of a single ordinary differential equation, which is linearly 
dependent on air and water temperature, as well as flow rate. Additionally, to handle data sequences such as 
time series more efficiently than traditional Recurrent Neural Networks (RNNs), we employ a Long Short-Term 
Memory (LSTM) neural network.
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Introduction

In recent years, climate change has caused 
disturbances at both local and global scales [1], 
directly impacting the water temperature of rivers. 
Temperature fluctuations are common in river 
water, wherein heated water returns gradually to 
its natural temperature [2].

Anthropogenic activities such as thermal 
pollution, deforestation, and climate change 
are typically responsible for changes in river 
temperature [3]. Natural factors also contribute 
to temperature variations, including changes in 
geothermal heat energy, seasonal fluctuations 
in ambient temperature and insolation, and 
alterations in river flow. The surface water 
temperature is further influenced by latitude, 
altitude, season, air circulation, cloud cover, flow 
rate, and water body depth [4]. These factors 
affecting river temperature can be categorized 
into atmospheric conditions, topography, 
flow dynamics, and riverbed characteristics 
[5].Generally, the average daily temperature 

increases downstream and tends to rise with 
distance and flow [6-8].

Consequently, temperature changes affect 
other internal processes within rivers, such as 
nutrient consumption, food availability, and 
dissolved oxygen concentration [9, 10], impacting 
aquatic organisms' growth and distribution [11-
14]. Moreover, water chemistry is influenced 
by temperature, as it affects density, leading to 
stratified water layers that do not mix, particularly 
evident in surface waters affected by latitude and 
altitude [15].

It is evident that a comprehensive understanding 
of the thermal regime of rivers is crucial for efficient 
environmental management and conducting 
environmental impact assessments [16]. Therefore, 
computer models predicting river water temperature 
are utilized. Numerous models have been developed 
for estimating river water temperature, including 
deterministic and statistical models. Deterministic 
models rely on energy balance principles and 
necessitate a considerable amount of input data.
In contrast, statistical models correlate water 
temperature with another variable, enabling a 
mathematical description of their relationship.
Given their similar temporal evolution, one such 
highly correlated variable is air temperature, 
making it regular to apply statistical regression 
models between these two variables [17].
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This article focuses on the physical variables 
derived from a model characterized by limited 
computational complexity. The final structure 
entails a single ordinary differential equation 
linearly dependent on air and water temperature 
and flow [18]. Additionally, we employ a Long 
Short-Term Memory (LSTM) neural network 
designed to handle data sequences, such as time 
series, more efficiently than traditional Recurrent 
Neural Networks (RNNs).

 
Materials and Methods

The simple linear regression employed to predict 
water temperature utilizes only air temperature as 
input data, with data collected every month. The 
resulting model is grounded on a focused heat 
balance concept. It considers an unknown volume 
(V) encompassing the river stretch, its tributaries 
(implicitly incorporating surface and underground 
water flows), and heat exchange with the atmosphere. 
Within this volume, the variation in water 
temperature is described by Equation 1:

 
)

 
(1)

Where t represents time (expressed in months, 
weeks, days, or hours), ρ is the density of water, 
ρCP is its specific heat capacity at constant 
pressure, A is the surface area under analysis, H 
is the heat flux at the river-atmosphere interface, 
Q is the temperature flux in the surface, Qi and Tw 
represent the temperatures of water flow (from 
tributaries and possibly groundwater), and V 
denotes the total volume reacting to heat fluxes. 
This total volume V encompasses not only the 
surface water body but also the region where 
surface water contacts deep water, rendering 
explicit inclusion of heat fluxes at the riverbed 
interface unnecessary. Moreover, the liquid heat 
flux H primarily depends on short and long-wave 
radiation and sensible and latent heat fluxes.

The model assumes that the air temperature can 
be used in all these processes. The general effect is 
included in the model linearly using a Taylor series 
expansion (Equation 2)
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Where Ta and Tw are the long-term average values 
(from now on indicated by a bar) of air and water 
temperatures, respectively. Equation 3 presents this 
relation

 
)

 
(3)

Where ho, ha, and hw are parameters that can be 
directly obtained from the derivative of Equation 3. 
The second term on the right side of the equation 
represents the difference between the heat flow 
coming out of the control volume, ρCP Q Tw and the 
sum of all heat flow inputs. The work of Toffolon 
& Piccolroaz (2015) [18] rewrote the equation 
presented in Cassie (2005) [19] and obtained 
Equation 4 below:
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(4)

As the reference temperature will likely change 
in different seasons to Tw, it was expressed as a first 
approximation in the form of annual sinusoidal 
variation (Equation 5).

 
]

 
(5)

W h e r e  t h e  r e f e r e n c e  v a l u e    

h a s  v a r i a t i o n  i n  a m p l i t u d e ,   a n d 
 [0,1] q, which contains two characteristic 

quantities. The inverse of the first ratio,     , is related 
to the depth of flow  (and therefore depends on the 
flow rate) but does not coincide with it.A portion 
of the saturated sediments should be included, 
especially for shallow flows with high transparency, 
where incident shortwave radiation can directly heat 
the river bed. The second reason in the equation,    , 
represents the inverse of the time and reach of the 
river and also varies with the flow.

This article will use an LSTM (Long Short-
Term Memory), a recurrent neural network (RNN) 
designed to handle data sequences, such as time 
series, more effectively than traditional RNNs.

Figure 1 illustrates the structure of the LSTM 
cell, comprising three distinct gates: the forget gate, 
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Figure 1. Structure of the internal LSTM cell.

the input gate, and the output gate. The memory 
cell, serving as a repository for state information, 
stands out as the characteristic element of LSTM 
networks. Upon activation of the input gate, new 
information is assimilated into the cell, whereas 
the forget gate triggers the removal of prior data. 
Within the feedback loop, the sigmoid function 
determines the information to be retained or 
forgotten in the memory cell, while the hyperbolic 
tangent function regulates cell input and output. 
Through the synergistic integration of these 
functions, LSTM can selectively retain or discard 
information, effectively managing time series data 
and generating predictions.

 
Characterization of the Study Area

The Catu River, situated in Bahia, Brazil, 
originates from Alagoinhas/Bahia, specifically from 
the village of Catuzinho. It traverses the Marechal 
Floriano neighborhood, crosses Catu Street, and 
flows through commercial areas before skirting the 
banks of BR 110 near UNEB - Campus II. Continuing 
its course, it reaches the city of Catu and eventually 

merges with the Pojuca River in Pojuca/Bahia. 
Serving as one of the primary sources of freshwater 
in the northeastern region of Bahia, the Catu River 
stretches approximately 120 kilometers, originating 
from the Serra do Orobó. Its trajectory encompasses 
urban and rural areas before discharging into 
the Atlantic Ocean. The river's watershed spans 
several municipalities, including Alagoinhas, 
Catu, and Pojuca, underscoring its significance 
as a vital natural resource for the local populace. 
Additionally, the Catu River plays a pivotal role 
in maintaining the ecological equilibrium of the 
region. Its banks and adjacent areas support diverse 
biodiversity, comprising various bird species, 
fish, and aquatic vegetation. Furthermore, its flow 
contributes to the preservation of groundwater, 
ensuring the provision of water to the population 
and safeguarding agricultural lands.

According to Silva and colleagues (2018) [20], 
similar to many rivers worldwide, the Catu River 
grapples with severe pollution issues primarily 
stemming from industrial and urban activities 
along its course. Improper disposal of solid and 
liquid waste, coupled with the absence of efficient 
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Table 1 presents the performance metrics of the 
model, including Mean Absolute Error (MAE), 
Mean Square Error (MSE), Root Mean Square Error 
(RMSE), and the coefficient of determination (R²). 
The MAE value of 0.27 indicates that, on average, 
the model's forecasts deviate by 0.27 units from 
the actual values. The MSE of 0.11, close to zero, 
suggests that the model performed well, with forecasts 
relatively close to the actual values. The RMSE of 
0.33 implies that the model is sensitive to outliers 
but still provides a reasonable degree of accuracy. 
However, the coefficient of determination R² of 
-4.84 raises concerns as it indicates a poor fit of the 
model's predictions to the actual values.

sewage treatment systems, significantly contributes 
to water quality degradation. These activities result 
in the release of toxic substances, including heavy 
metals and chemicals, which pose threats to both 
water quality and aquatic life. Santos (2007) [21] 
emphasizes the substantial dependence of the local 
economy on the Catu River.

Fishing stands out as a traditional activity in 
riverside communities, serving as a vital source 
of sustenance and income for numerous families. 
Moreover, irrigated agriculture along the riverbanks 
supports cultivating crops such as fruits, legumes, 
and sugarcane. River water is also utilized for 
livestock husbandry and sustains operations in 
small-scale industries. However, these activities 
harm aquatic flora and fauna, leading to species 
extinction and ecological imbalance. Furthermore, 
contamination poses health risks to communities 
reliant on river water for daily needs [22].

The Catu River holds significant cultural 
importance, serving as the backdrop for festivities, 
religious ceremonies, and recreational pursuits, 
enriching riverside communities' cultural heritage. 
Additionally, the river is a vital transportation artery 
for people and goods in certain regions, facilitating 
access to essential services like healthcare and 
education. Despite its pivotal role, the Catu River 
faces numerous threats. Water pollution from 
industrial and domestic waste undermines the 
river's quality and the well-being of communities 
dependent on it [22]. Deforestation of riparian forest 
areas and harmful agricultural practices exacerbate 
riverbank erosion and siltation. Furthermore, 
climate change disrupts the rainfall regime, 
impacting freshwater flow.

Results and Discussion

Figure 2 displays a collection of training data 
represented in blue, alongside a set of validation 
data depicted in orange. Upon comparison, it 
becomes evident that a significant similarity 
exists between the expected and obtained results, 
highlighting the effectiveness of the LSTM neural 
network.

Figure 2. Comparison between expected and 
obtained results.

Table 1. Results obtained from the temperature.

Metrics Value
MAE 0.27
MSE 0.11

RMSE 0.33
R2 -4.84

0.00035
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Conclusion

In conclusion, the results demonstrate that the 
LSTM neural network, designed to handle data 
sequences, has shown significant effectiveness in 
accurately predicting the water temperature of the 
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Catu River. Despite some limitations, particularly 
indicated by the negative R² value, neural networks 
represent a promising approach, considering 
both accuracy and computational efficiency. 
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