
www.jbth.com.br

52

Received on 12 September 2022; revised 21 February 2023.
Address for correspondence: Anderson F. de S. Lima.
Anderson F. de S. Lima. Rua Senador Quintino - 1984 -
Brasília. Feira de Santana, Bahia, Brazil. Zipcode: 44088-720.
E-mail:eng.andersonfsl@gmail.com.

J Bioeng. Tech. Health 2023;6(1):52-57
© 2023 by SENAI CIMATEC. All rights reserved.

Path Planning Comparison Strategies for Mobile RobotNavigation

Anderson F. de S. Lima1*, Marcella G.S. dos Santos1, João V.S. Mendes1, Matheus A. da Silva1, Marco A. dos Reis2

1Robotics and Autonomous Systems Competence Center, SENAI CIMATEC University Center; 2Computational Modeling
and Industrial Technology Program, SENAI CIMATEC University Center;Salvador, Bahia, Brazil

Autonomous navigation is an essential application because it allows the robot to perform activities without human
interference. It enables the execution of tasks that pose a risk or difficulty to the human being. This material
aims to present the research to evaluate the performance of different navigation algorithms. The results obtained
in the first phase of the research will be highlighted, in which the A* (A Star) and Dijkstra techniques were
evaluated. The robot was integrated into the Robot Operating System (ROS) framework, and the navigations
were performed in a labyrinth-like environment.
Keywords: Autonomous Navigation. ROS. A*. Dijkstra.

Introduction

Mobile ground robots are increasingly common
in robotics in hazardous environments. They are
classified as Unmanned Ground Vehicles (UGVs),
used in many areas, and may have applications
in disaster rescue, nuclear inspection, planetary
exploration, and military combats [1]. These robots
navigate autonomously, requiring intelligence to
define the most efficient routes to complete their
missions. In a robotic navigation platform, there is
a layer responsible for obtaining information from
the environment and another layer responsible for
reading and interpreting this data. Path planning
algorithms are used to find a path between one
point and another as efficiently as possible, such
as Dijkstra and A* [2].

Robotic System

Autonomous robots are systems capable of
interacting with the work environment without
human action throughout their task execution. One
of the most common applications in mobile robotics

is autonomous navigation through unfamiliar
environments, where many navigation techniques
can be used to achieve an end goal.

The robotic system used in this work was the
Turtlebot, a low-cost, open-source mobile robotics
platform designed to be user-friendly and with the
same capabilities as platforms from large robotics
companies [3]. Turtlebot (Figure 1) has several
devices in its structure to move, which allows the
robot to recognize the environment around the asset,
process this information and control its actions.

A 2D LIDAR is responsible for collecting
information from the environment, using a laser
beam fired by the device so that the system can
identify close objects based on the reflection time
[4]. A Raspberry is responsible for processing this
data, which is presented as a low-cost, portable
solution for integrating the sensor into the robotic
system [5]. Hence, an OpenCR control board was
used to control the robot actuators and distribute
power to the devices [4].

Robotic systems may also be able to explore
unknown spaces. For example, explorations can
be dedicated to getting a robot out of a residence,
a maze, getting a map of an unknown region, along
with others.

Robotics Navigation

Navigation is essential for mobile autonomous
systems because mobile robots need to move in
environments with little or no human intervention

www.jbth.com.br

JBTH 2023; (March) 53Path Planning for Mobile Robot Navigation

in many applications. A framework is needed that
supports the navigation. ROS2 contains several
packages that are used in robotic applications.
Among them, NAV2 seeks to find a safe way to
move a robot from point A to point B. It runs in
several robot navigation applications, such as the
following dynamic points. It completes dynamic
path planning, calculate motor speeds, avoid
obstacles, and structure recovery behaviors. The
package uses behavior trees to call modular servers,
so it completes an action, which can be, calculating
a path, controlling effort, recovery, or any other
activity related to navigation [6].

Some algorithms are used in navigation to
do trajectory planning to perform the trajectory
and achieve the proposed goal at a lower cost.
The minimum path discovery algorithms can be
classified into two forms: Uninformed search,
when the algorithm does not use heuristics to find
the shortest path between origin and destination,
and informed search when the algorithm uses
heuristics to estimate the minimum cost path [7].
Some examples of these algorithms are Dijkstra and
A*, which use uninformed and informed search,
respectively.

Dijkstra
Dijkstra’s algorithm is a technique that is often

used in differential mobile robots because it uses
uniformed search capable of obtaining a trajectory
between two nodes. These two nodes are points in
the environment. From a specific node in space,
the Dijkstra algorithm calculates from all available
nodes a trajectory to the other node where the goal
is. Figure 2 illustrates the possibilities of the paths
to be used by the Dijkstra algorithm.

Dijkstra solves the single-origin shortest path
problem on a directed or undirected graph when
all edge weights are non negative. Equation 1

Figure 1. TurtleBot3 - Burger Version.

Single Board Computer
(Raspberry Pi)

OpenCR
(32-bit ARM Cortex®-M7)

DYNAMIXEL x 2 for
Wheels

Sprocket Wheels for
Tire and Caterpillar

Li-Po Ba� ery

360° LiDAR for SLAM & Naviga�on

Scalable Structure

Turtle Bot3 Burger

Figure 2. Algorithm Dijkstra.

1

2

4

3

9
10

8

7

10
5

15

5

10

20

10

10
5

5

20

15

15

15

5

10
20

7

20

5 5
6

www.jbth.com.br

54 JBTH 2023; (March)Path Planning for Mobile Robot Navigation

illustrates the time cost of Dijkstra’s algorithm,
in which V is the number of vertices, and E is the
number of edges [8].

 (1)

A*
The A* search algorithm is used in various fields

of computer science and can also be applied to
search problems related to mobile robotics.

The A* was created as part of a general-purpose
mobile robot project called Shakey [9]. One of
Shakey’s most notable results was using this search
algorithm. The A* algorithm uses graphs as the
basis of the search system (Figure 3). The initial
vertex represents the starting point of the search,
and the endpoint is the final goal. The algorithm is
formulated using weighted graphs to find a path to
the given objective with the lowest cost (shortest
distance traveled, along with others). The algorithm
keeps several paths originating from the starting

point and expands these paths one point at a time
until its search criteria are satisfied.

The search is performed through minimal paths
using heuristic functions, i.e., the selection of nodes
is based on the distance from the start node plus
the approximate distance to the destination. This
approximation estimate can be represented by the
function f(n) = g(n) + h(n) [10].

According to Rachmawati and Gustin [11], the
star algorithm and the most widely known form
of best-choice search solution, A star evaluates
nodes in graphs by combining the cost of reaching
a particular node already visited and the cost of
going to the destination node.

Materials and Methods

This research aims to compare the performance
of trajectory planning strategies in ROS using
Turtlebot3, and the scope of the paper is to present
the results of the comparison made between the
A* and Dijkstra techniques. Figure 4 presents the
Methods used to perform the comparison between
planning strategies.

In the first stage, a literature search was done
to understand the concepts of the A* and Dijkstra
techniques, how to use them, and thus define the
system architecture. After that, the algorithms were
configured on the robotic platform to be tested in a
simulation environment, and the first samples of the
system were collected. After collecting the samples,
a normality test is done to know if the sample is

Figure 4. Methods used to compare strategies’ plans.

Figure 3. Graphs of A*’ algorithm.

1

1

a
c

b 1

Bibliographic Research

BACKGROUND DEVELOPMENT CONCLUSION

Algorithm Settings

Comparative Results

System Architecture Collect Samples

Definition of A* and
Dijkstra

Tests in Simulated
Environment

RESULTS AND ANALYSIS

Normality Test

Statistical Analysis

not

yes

www.jbth.com.br

JBTH 2023; (March) 55Path Planning for Mobile Robot Navigation

viable for analysis. If not, a new configuration is
made, and the tests are done again. However, when
the samples pass the test, a statistical analysis will
be done to present the comparative results between
the techniques.

Reults and Discussion

The Mission

We proposed a misison to Turtlebot3 to analyze
the performance of the algorithms (Figure 5). The
mission was to move it from an initial point to a
final point in the simulated gazebo environment.

The robot uses AMCL to locate itself and
plans the path using the A* and Dijkstra, enabling
observing each algorithm’s time spent completing
the mission and comparing them. Thirty trials were
run for each to perform the task to compare the
algorithms’ performance (Figure 6).

Observing the navigation missions, we observed
the trajectory generated by each path-planning
algorithm (Figure 7). Meanwhile, Figure 8 presents
the time samples for each algorithm.

For the analysis, the normality of the dataset
was initially verified through the Shapiro-Wilk test.
The data for the Dijkstra algorithm had a p-value
of 0.404. For the A star, the p-value was 0.150

for a significance level of 5% for both cases. This
value confirms that the data is usually distributed.
The average execution time for the mission using
the Dijkstra path planner was 20.04 seconds with
a standard deviation of 0.158 seconds, and the
average time using the A star path planner was 20.14
seconds with a standard deviation of 0.207 seconds.
Figure 9 shows the comparison between the two
algorithms. For the sample values, we conclude
that there was no relevant difference between the
navigation time based on the mean and standard
deviation.

We used the t-test to compare the average
navigation population time between the algorithms.
The null hypothesis was Dijkstra, and A star
algorithm has an equal average navigation time.
The null hypothesis for the significance level of
5% was rejected for a p-value of 0.042, concluding
that the population means time for this navigation
mission using the A star and Dijkstra algorithms
are not equal, with little significance.

Conclusion

We performed a comparison between A*
and Dijkstra to make UGVs more efficient in
the trajectory planning process, using statistical
comparison methods to understand the differences.

Figure 5. Gazebo simulation.

www.jbth.com.br

56 JBTH 2023; (March)Path Planning for Mobile Robot Navigation

From the data obtained, we observed that the
amplitude of the minimum and maximum time for
the two algorithms was one second, which within
the total time was too small for a definition of
which method showed a better performance through
graphical analysis. The t-test were used to verify
the averages of time spent by each algorithm, and
the value obtained to reject the hypothesis was
irrelevant.

Figure 7. Path planned for each algorithm.

Figure 8. Time samples for each algorithm.

In this sense, we deduced that the Dijkstra and
A* trajectory planning techniques present very
close performances in a simulated environment.

At this point, we concluded that the difference
between the algorithms for short trajectories
becomes irrelevant even if Dijkstra is considered
a greendy search algorithm leading to a longer
mission time. According to Rachmawati and Gustin
[11], the A* algorithm only scans toward the final

dijkstra path
A star path

T
im

e
 s

p
e

n
t

(s
)

0

19.8

20.0

20.2

20.4

20.6

dijkstra
astar

5 10 15 20 25 30

Atempts

www.jbth.com.br

JBTH 2023; (March) 57Path Planning for Mobile Robot Navigation

destination. In contrast, the Dijkstra algorithm does
an equally expanding scan for each point ending
in exploration with a larger area before finding the
final objective.

For future studies on the topic, it is recommended
to consider new mission possibilities, mainly
regarding the increase in trajectory distance,
the presence of more obstacles, and varying
scenarios, enabling the analysis of each technique’s
performance in more contexts.

References

1. Hua C et al. A global path planning method for unmanned
ground vehicles in off-road environments based on
mobility prediction. Machines MDPI 2022;10(5):375.

2. Guruji AK, Agarwal H, Parsediya D. Time-efficient A*
algorithm for robot path planning. Procedia Technology
Elsevier 2016;23:144–149.

Figure 9. Algorithm time comparison.

3. What is TurtleBot? Disponível em: <https://www.
turtlebot.com/about/>.

4. Amsters R, Slaets P. Turtlebot 3 as a robotics education
platform. In: Springer. International Conference on
Robotics in Education (RiE). [S.l.], 2019:170–181.

5. Zhao CW, Jegatheesan J, Loon SC. Exploring iot
application using raspberry pi. International Journal of
Computer Networks and Applications 2015;2(1):27–34.

6. NAV2 — Documentação da Navegação 2 1.0.0. <https://
navigation.ros.org/>. Accessed on June 30, 2022.

7. Inteligência Artificial - 3ª Ed. 2013. <https://www.cin.ufpe.
br/~gtsa/Periodo/PDF/4P/SI.pdf>.Accessed on June 30, 2022.

8. Russel PN. Artificial intelligence: A modern approach
by Stuart. Russell and Peter Norvig contributing writers,
Ernest Davis et al., 2010.

9. NilssonNJ. Shakey the robot. In: [S.l.: s.n.], 1984.
10. Zhao CW, Jegatheesan J, Loon SC. Exploring iot

application using raspberry pi. International Journal of
Computer Networks and Applications 2015;2(1):27–34.

11. Rachmawati D, Gustin L. Analysis of Dijkstra’s algorithm
and A* Algorithm in shortest path problem. In: Journal of
Physics: Conference Series. IOP Publishing, 2020:012061.

19.8

dijkstra astar
Algorithm

20.0

20.2

T
im

e
 (

s
)

20.4

20.6

