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Tuning a CPU-Based Stencil Computation in a DPC++ Multi-Device Environment
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Reverse Time Migration (RTM) uses the finite-difference (FD) method to compute numerical approximations 
for the acoustic wave equation. It is a computational bottleneck for RTM applications and therefore needs to 
be optimized to guarantee timely results and efficiency when allocating resources for hydrocarbon exploration. 
This article describes our experience reengineering a migrated CUDA-based RTM code to SYCL into a multi-
device RTM.
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Introduction 

RTM method, which stands for Reverse 
Time Migration, was first proposed by Baysal 
and colleagues [1] and McMechan [2] in 1983 
but gained attention recently due to advances in 
computer capabilities [3]. It is a two-way wave 
equation that intends to build a high-quality and 
accurate image of the subsurface. Its bottleneck 
concerns to the need to compute two wave 
fields, one for the source (computed as a forward 
propagation) and other for the receiver (computed 
as a backward propagation) for each data point in 
the velocity model and for each shot (accurate data 
usually have thousands of shots) [4]. The Finite 
Difference Time Domain is a standard numerical 
solution used to model the wave propagation in 
RTM. The stencil data arrangement is used to 
compute this approximation at each grid point.

Despite the advantages intrinsic to the 
method, two significant computational difficulties 
characterize it: The high number of floating-
point operations during the propagation step and 
the difficulty storing the wavefields in the main 
memory. Engineering seeks to explore both the 

intrinsic parallelism of tasks and the optimization 
of computational resources, designing solutions 
capable of running on different accelerated 
processing units, for example, to mitigate the 
effect of these problems. The optimization of 
this method represents an excellent economic 
advantage for exploration geophysics since it 
reduces the chances of errors in well-drilling.

Materials and Methods
  

Reengineering the DPC++ Based RTM Application 
for Multi-GPU Execution

In this paper, we consider a reference 
RTM algorithm written in C++. Algorithm 1 
demonstrates the simplified execution of the RTM 
algorithm (Figure 1). The vector P store the state 
of pressure points in different time steps. The 
stencil computation needed for solving the finite-
difference method dominates the total runtime; 
therefore, this is the main kernel to be accelerated 
on GPU devices. In this scenario, forward and 
backward propagation happens one after another 
in a serialized way. In these implementations, there 
is a dependence between the two propagation: 
during forward time steps, the source wavefields 
are stored and used in backward propagation to 
provide wavefields reconstruction.

We proposed to explore a multi-GPU 
environment. So, we worked on the dependencies 
between forward and backward propagation 
to execute them simultaneously in two GPU 
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devices. This is only possible by building 
strategies to the previous model and storing 
the observed data to be used in the backward 
propagation without needing a reconstruction. 
Algorithm 2 presents a pseudocode describing 
the main steps for building RTM code without 
dependencies (Figure 2). The data used by RTM 
are generated previously and are not described 

in Algorithm 2. The method responsible to 
generates data is called modeling. Some steps 
were suppressed in Algorithm 2 and presented 
as functions, but those methods are described in 
Algorithm 1.

After building a code without dependencies, it 
is possible to propose an implementation of the 
RTM code using multiple devices. Figure 3 shows 

Figure 1. Algorithm 1.

Figure 2. Algorithm 2.

Algorithm 1 RTM Base CPU Version

20: 0 tofor doiz = nz

src(pp)4:

3: stencil(p, pp, vel2, nx, nz)

14: for do0 toit = nt

13: end for

21: imloc[ix][iz] += swf[nt-it-1][ix][iz] * p[ix+pad][iz+pad]

data[ix][it] = p[ix+nxb][gz]6:

9: 0 tofor doiz = nz

7: end for

17: p[ix+nxb][gz] +=  data[ix][it]

fd_init();1:

0 to8: for doix = nx

19: 0 tofor doix = nx

= 0 to5: for doix nx

11: end for

0 to2: for doit nt

24: end for

10: swf[it][ix][iz] = p[ix+pad][iz+pad]

18: end for

23: end for

12: end for

15: stencil(p, pp, vel2, nx, nz)

16: 0 tofor doix = nx

22: end for

Loop to forward propagation

Save wavefield to use in image condition

Used to initialize all structures

Add shot source

Save data to use in wave reconstruction

Calculate Finite Differences

Loop to backward propagation

Apply image condition

Reading wavefield

fd_init();1:

dobs = read_observed_data()2:

for do3: = 0 toit nt

stencilIp, pp, vel2, nx, nz)4:

src(pp)5:

saving_wvf(sfw, p)6:

12: end for

7: end for

14: end for

13: saving_wvf(rfw, p)

15: imloc = apply_image_condition(swf, rwf)

9: stencil(p, pp, vel2, nx, nz)

10: = 0 tofor doix nx

= 0 to8: for doit nt

11: p[ix+nxb][gz] += dobs[ix][it]

Calculate Finite Differences

Used to initialize all structures

Read precomputed observed data

Loop to forward propagation

Saving forward wavefield

Loop to Backward propagation

Adding precomputed observed data to pressure field

Saving backward wavefield

Add shot source

Algorithm 2 RTM Base Without Dependencies Version
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a simplified version of the new code structure. The 
approach is that propagations are independently 
processed, and synchronization between devices is 
only necessary at the end of the operation. Finally, 
the image condition is applied. The result of both 
propagations, forward and backward, is the RTM 
migration image.

One way to control the flow between devices 
is to use threads. In this approach, we use threads 
to process propagations in parallel. A parallel 
zone starts with two threads for executing and 
synchronizing the RTM model. After the threading 
process on the GPU ends, the data return to the CPU. 

After parallel threads, the CPU computes the image 
condition, as described in Algorithm 3 (Figure 4). 
 
The SYCL Thread Hierarchy 

The thread hierarchy exploration aims to 
maximize the occupancy of the GPU resources. 
In an SYCL kernel, the programmer can affect 
the work distribution by structuring the kernel 
with proper workgroup size and sub-group size 
and organizing the work items for efficient vector 
execution (Figure 5). Writing efficient vector 
kernels is crucial for high performance on GPU.

 

Figure 3. Multi-GPU without dependence 2D-RTM flowchart.

The figure shows a structure of independent foward propagation and backward propagation computation in multiple  devices. 
Synchronization is made only in the CPU.

Figure 4. Algorithm 3.

3: init_GPUs()

fd_init();1:

9: else

11: end if

}12:

#pragma omp barrier13:

dobs = read_observed_data()2:

omp_set_num_threads(2)4:

forward(P, PP, Vel, swf, tid)8:

#pragma omp parallel{5:

imloc = apply_image_condition(swf, rfw)14:

== 07: if thentid

backward(PR,PPR, Vel, rwf, tid)10:

tid = get_thread_num();6:

Each propagation runs in a different thread

Init all structures to use Multi-GPU

These data is the input for the backward propagation

Run in GPU 1

Used to initialize all structures

Run in GPU 2

Algorithm 3 RTM Base CPU Version

Forward
Propagation

Direct propagation
results

GPU

GPU

Imaging
Condition

Final Migrated
imageForward propagation

results

Forward
Propagation

GPU Executation
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Laplacian Kernel

Laplacian is the core of the RTM algorithm, 
which is highly time-consuming in the application. 
Figure 6 shows how the prominent part of the 
Laplacian was implemented using the SYCL 
thread hierarchy. This implementation focuses on 
workgroup and sub-group size selection. SYCL 
does not provide a mechanism to set the number 
of threads directly in a workgroup. However, it 
can use workgroup size and SIMD sub-group size 
to set the number of threads. Thread contexts are 
easy to utilize, starting with selecting the number 
of threads in a workgroup (Figure 6, lines 4 to 9).

 
Results and Discussion

 
Computational Results

In experiments using base serial code, 
execution will use only one CPU core. We use two 
devices in experiments using the GPU version 
of the code. Table 1 describes a GPU device and 
a CPU device. An Intel® DevCloud node was 
chosen for the preliminary experiments. Table 
1 shows the hardware description of the node.  
 
Reference Input Data

Since the vector P represents the pressure 
field, its characteristics are directly related to the 

characteristics of the initial velocity model. Both 
are represented as 2-D matrices with the exact 
dimensions. We begin considering three seismic 
velocity models illustrated by Figure 7 with nx 
= 151 and nz = 151, Figure 8 with nx = 369 and 
nz = 375, Figure 9 with nx = 351 and nz = 367, 
as the base models for execution and migration 
evaluation.

The models presented here were our reference  
to build matrix P, which is the input parameter of 
the function that performs the stencil.

 
Experimental Results

The results of the experiments are available in 
Table 2. A comparison of the serial and parallel 
versions is also available. As we can see, the 
multi-device RTM is faster for all models tested.

Figure 10 is a serial reference for a parallel 
approach, while Figure 11 shows an image migration 
using the multi-device RTM code for a 3-layer model 
(Figure 7). Figure 12 is a subtraction for Figures 10 
and 11 using the farith package. Figure 14 shows an 
image migration using the multi-device RTM code 
for the SPluto model (Figure 9).

Figure 13 is a serial reference for a parallel 
approach, and Figure 15 is a subtraction for 
Figures 13 and 14 using the SPluto model.           
Figures 12 and 15 show that the migrated multi-
device image version does not differ significantly 
from the CPU-migrated image version.

 
Figure 5. The relationship diagram among ND-Range, work-group, sub-group, and work-item.

work-group of
(4,4,4) work-items

dimension 1
of ND-range
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4 work-items
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Figure 6. Kernel for laplacian on GPU using SYCL with multiple thread hierarchy.

The figure shows a snippot for forward propagation and nackward propagation computation in 
multiple devices.

Table 1. DevCloud node description.

Description

CPU Intel(R) Xeon(R) Gold 6336Y CPU @ 2.40GHz
GPU Intel HD Graphics P630
Memory 128 GB
GCC 9.4.0-1ubuntu1~20.04.1
DPC++ 2022.0.0 (2022.0.0.20211123)

Figure 7. seismic velocity 1. Figure 8. seismic velocity 2. Figure 9. seismic velocity 3.

nx = 151 and nz = 151 nx = 369 and nz = 375 nx = 351 and nz = 367
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Table 2. A CPU serial RTM and multi-device parallel RTM execution time comparison on DeCloud 
environment.

Velocity Model Serial Time(s) Parallel Time(s)

3 layer 4.76 1.08

Marmousi 42.93 3.6
SPluto 54.91 5.5

Figure 10. CPU-based RTM 
migration for 3 layer models. 

Figure 11. Muti-device-based 
RTM migration for 3 layer 
models.

Figure 12. Difference between 
CPU and Multi-device RTM 
migration for 3 layer models.

Figure 13. CPU-based RTM 
migration  for the SPluto 
model.

Figure 14. Multi-device RTM 
migration  for   the SPluto  
model.

Figure 15.  Difference between 
CPU and Multi-Device RTM 
migration for SPluto model.
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Conclusion

The first step involves migrating a serial base 
RTM, already changed to provide simultaneous 
forward/backward propagation, to DPC++ and the 
improvements related to the DPC++ source code 
implementation. This step was achieved, as shown 
in the image migration in the results section. In 
the second step, researchers focused on possible 
optimizations to achieve those objectives: the 
application was rewritten, focusing on thread 
hierarchy, as shown in Figure 6. 

Finally, the Multi-devices RTM application was 
successfully developed and tested. Intel® tools 
also helped to decide what resource to use and 
correctness check. The Multi-devices RTM code 
is a small workload but highly time-consuming. 
Further work could explore larger workloads, 
aiming to use the whole GPU memory and the 
main memory.
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