
www.jbth.com.br

24

Tuning a CPU-Based Stencil Computation in a DPC++ Multi-Device Environment

Tiago Conceição Oliveira1*, Murilo Boratto1, Antônio Horácio Rodrigues1, Orlando Mota Pires1,
Leonardo Rodrigues Soares1

1SENAI CIMATEC, Supercomputing Center; Salvador, Bahia, Brazil

Reverse Time Migration (RTM) uses the finite-difference (FD) method to compute numerical approximations
for the acoustic wave equation. It is a computational bottleneck for RTM applications and therefore needs to
be optimized to guarantee timely results and efficiency when allocating resources for hydrocarbon exploration.
This article describes our experience reengineering a migrated CUDA-based RTM code to SYCL into a multi-
device RTM.
Keywords: Multi-Device RTM. OneAPI. SYCL. Heterogeneous Computing.

Introduction

RTM method, which stands for Reverse
Time Migration, was first proposed by Baysal
and colleagues [1] and McMechan [2] in 1983
but gained attention recently due to advances in
computer capabilities [3]. It is a two-way wave
equation that intends to build a high-quality and
accurate image of the subsurface. Its bottleneck
concerns to the need to compute two wave
fields, one for the source (computed as a forward
propagation) and other for the receiver (computed
as a backward propagation) for each data point in
the velocity model and for each shot (accurate data
usually have thousands of shots) [4]. The Finite
Difference Time Domain is a standard numerical
solution used to model the wave propagation in
RTM. The stencil data arrangement is used to
compute this approximation at each grid point.

Despite the advantages intrinsic to the
method, two significant computational difficulties
characterize it: The high number of floating-
point operations during the propagation step and
the difficulty storing the wavefields in the main
memory. Engineering seeks to explore both the

intrinsic parallelism of tasks and the optimization
of computational resources, designing solutions
capable of running on different accelerated
processing units, for example, to mitigate the
effect of these problems. The optimization of
this method represents an excellent economic
advantage for exploration geophysics since it
reduces the chances of errors in well-drilling.

Materials and Methods

Reengineering the DPC++ Based RTM Application
for Multi-GPU Execution

In this paper, we consider a reference
RTM algorithm written in C++. Algorithm 1
demonstrates the simplified execution of the RTM
algorithm (Figure 1). The vector P store the state
of pressure points in different time steps. The
stencil computation needed for solving the finite-
difference method dominates the total runtime;
therefore, this is the main kernel to be accelerated
on GPU devices. In this scenario, forward and
backward propagation happens one after another
in a serialized way. In these implementations, there
is a dependence between the two propagation:
during forward time steps, the source wavefields
are stored and used in backward propagation to
provide wavefields reconstruction.

We proposed to explore a multi-GPU
environment. So, we worked on the dependencies
between forward and backward propagation
to execute them simultaneously in two GPU

Received on 15 December 2022; revised 10 January 2023.
Address for correspondence: Tiago Conceição Oliveira.
Av Comendador Franco, No. 8115, Condomínio Terra, apt
22, bloco A4. Zipcode: 81560001. Curitiba PR. E-mail:
tiagocompuesc@gmail.com.

J Bioeng. Tech. Health 2023;6(Suppl.1):24-31.
© 2022 by SENAI CIMATEC. All rights reserved.

www.jbth.com.br

JBTH 2023; (January) 25CPU-Based Stencil in a Multi-Device Environment

devices. This is only possible by building
strategies to the previous model and storing
the observed data to be used in the backward
propagation without needing a reconstruction.
Algorithm 2 presents a pseudocode describing
the main steps for building RTM code without
dependencies (Figure 2). The data used by RTM
are generated previously and are not described

in Algorithm 2. The method responsible to
generates data is called modeling. Some steps
were suppressed in Algorithm 2 and presented
as functions, but those methods are described in
Algorithm 1.

After building a code without dependencies, it
is possible to propose an implementation of the
RTM code using multiple devices. Figure 3 shows

Figure 1. Algorithm 1.

Figure 2. Algorithm 2.

Algorithm 1 RTM Base CPU Version

20: 0 tofor doiz = nz

src(pp)4:

3: stencil(p, pp, vel2, nx, nz)

14: for do0 toit = nt

13: end for

21: imloc[ix][iz] += swf[nt-it-1][ix][iz] * p[ix+pad][iz+pad]

data[ix][it] = p[ix+nxb][gz]6:

9: 0 tofor doiz = nz

7: end for

17: p[ix+nxb][gz] += data[ix][it]

fd_init();1:

0 to8: for doix = nx

19: 0 tofor doix = nx

= 0 to5: for doix nx

11: end for

0 to2: for doit nt

24: end for

10: swf[it][ix][iz] = p[ix+pad][iz+pad]

18: end for

23: end for

12: end for

15: stencil(p, pp, vel2, nx, nz)

16: 0 tofor doix = nx

22: end for

Loop to forward propagation

Save wavefield to use in image condition

Used to initialize all structures

Add shot source

Save data to use in wave reconstruction

Calculate Finite Differences

Loop to backward propagation

Apply image condition

Reading wavefield

fd_init();1:

dobs = read_observed_data()2:

for do3: = 0 toit nt

stencilIp, pp, vel2, nx, nz)4:

src(pp)5:

saving_wvf(sfw, p)6:

12: end for

7: end for

14: end for

13: saving_wvf(rfw, p)

15: imloc = apply_image_condition(swf, rwf)

9: stencil(p, pp, vel2, nx, nz)

10: = 0 tofor doix nx

= 0 to8: for doit nt

11: p[ix+nxb][gz] += dobs[ix][it]

Calculate Finite Differences

Used to initialize all structures

Read precomputed observed data

Loop to forward propagation

Saving forward wavefield

Loop to Backward propagation

Adding precomputed observed data to pressure field

Saving backward wavefield

Add shot source

Algorithm 2 RTM Base Without Dependencies Version

www.jbth.com.br

26 JBTH 2023; (January)CPU-Based Stencil in a Multi-Device Environment

a simplified version of the new code structure. The
approach is that propagations are independently
processed, and synchronization between devices is
only necessary at the end of the operation. Finally,
the image condition is applied. The result of both
propagations, forward and backward, is the RTM
migration image.

One way to control the flow between devices
is to use threads. In this approach, we use threads
to process propagations in parallel. A parallel
zone starts with two threads for executing and
synchronizing the RTM model. After the threading
process on the GPU ends, the data return to the CPU.

After parallel threads, the CPU computes the image
condition, as described in Algorithm 3 (Figure 4).

The SYCL Thread Hierarchy

The thread hierarchy exploration aims to
maximize the occupancy of the GPU resources.
In an SYCL kernel, the programmer can affect
the work distribution by structuring the kernel
with proper workgroup size and sub-group size
and organizing the work items for efficient vector
execution (Figure 5). Writing efficient vector
kernels is crucial for high performance on GPU.

Figure 3. Multi-GPU without dependence 2D-RTM flowchart.

The figure shows a structure of independent foward propagation and backward propagation computation in multiple devices.
Synchronization is made only in the CPU.

Figure 4. Algorithm 3.

3: init_GPUs()

fd_init();1:

9: else

11: end if

}12:

#pragma omp barrier13:

dobs = read_observed_data()2:

omp_set_num_threads(2)4:

forward(P, PP, Vel, swf, tid)8:

#pragma omp parallel{5:

imloc = apply_image_condition(swf, rfw)14:

== 07: if thentid

backward(PR,PPR, Vel, rwf, tid)10:

tid = get_thread_num();6:

Each propagation runs in a different thread

Init all structures to use Multi-GPU

These data is the input for the backward propagation

Run in GPU 1

Used to initialize all structures

Run in GPU 2

Algorithm 3 RTM Base CPU Version

Forward
Propagation

Direct propagation
results

GPU

GPU

Imaging
Condition

Final Migrated
imageForward propagation

results

Forward
Propagation

GPU Executation

www.jbth.com.br

JBTH 2023; (January) 27CPU-Based Stencil in a Multi-Device Environment

Laplacian Kernel

Laplacian is the core of the RTM algorithm,
which is highly time-consuming in the application.
Figure 6 shows how the prominent part of the
Laplacian was implemented using the SYCL
thread hierarchy. This implementation focuses on
workgroup and sub-group size selection. SYCL
does not provide a mechanism to set the number
of threads directly in a workgroup. However, it
can use workgroup size and SIMD sub-group size
to set the number of threads. Thread contexts are
easy to utilize, starting with selecting the number
of threads in a workgroup (Figure 6, lines 4 to 9).

Results and Discussion

Computational Results

In experiments using base serial code,
execution will use only one CPU core. We use two
devices in experiments using the GPU version
of the code. Table 1 describes a GPU device and
a CPU device. An Intel® DevCloud node was
chosen for the preliminary experiments. Table
1 shows the hardware description of the node.

Reference Input Data

Since the vector P represents the pressure
field, its characteristics are directly related to the

characteristics of the initial velocity model. Both
are represented as 2-D matrices with the exact
dimensions. We begin considering three seismic
velocity models illustrated by Figure 7 with nx
= 151 and nz = 151, Figure 8 with nx = 369 and
nz = 375, Figure 9 with nx = 351 and nz = 367,
as the base models for execution and migration
evaluation.

The models presented here were our reference
to build matrix P, which is the input parameter of
the function that performs the stencil.

Experimental Results

The results of the experiments are available in
Table 2. A comparison of the serial and parallel
versions is also available. As we can see, the
multi-device RTM is faster for all models tested.

Figure 10 is a serial reference for a parallel
approach, while Figure 11 shows an image migration
using the multi-device RTM code for a 3-layer model
(Figure 7). Figure 12 is a subtraction for Figures 10
and 11 using the farith package. Figure 14 shows an
image migration using the multi-device RTM code
for the SPluto model (Figure 9).

Figure 13 is a serial reference for a parallel
approach, and Figure 15 is a subtraction for
Figures 13 and 14 using the SPluto model.
Figures 12 and 15 show that the migrated multi-
device image version does not differ significantly
from the CPU-migrated image version.

Figure 5. The relationship diagram among ND-Range, work-group, sub-group, and work-item.

work-group of
(4,4,4) work-items

dimension 1
of ND-range

dimension 2
of ND-range

ND-Range Work-group Sub-group Work-item

dimension 0
of ND-range

dimension 1
of work-group

dimension 2
of work-group

dimension 0
of work-group

dimension 2
of sub-group

sub-group of
4 work-items

www.jbth.com.br

28 JBTH 2023; (January)CPU-Based Stencil in a Multi-Device Environment

Figure 6. Kernel for laplacian on GPU using SYCL with multiple thread hierarchy.

The figure shows a snippot for forward propagation and nackward propagation computation in
multiple devices.

Table 1. DevCloud node description.

Description

CPU Intel(R) Xeon(R) Gold 6336Y CPU @ 2.40GHz
GPU Intel HD Graphics P630
Memory 128 GB
GCC 9.4.0-1ubuntu1~20.04.1
DPC++ 2022.0.0 (2022.0.0.20211123)

Figure 7. seismic velocity 1. Figure 8. seismic velocity 2. Figure 9. seismic velocity 3.

nx = 151 and nz = 151 nx = 369 and nz = 375 nx = 351 and nz = 367

0

20

40

60

80

100

120

140

20 40 60 80 100 120 140
0

50

100

150

200

250

300

350

0 100 200 300
0

50

100

150

200

250

300

350

0 100 200 300

www.jbth.com.br

JBTH 2023; (January) 29CPU-Based Stencil in a Multi-Device Environment

Table 2. A CPU serial RTM and multi-device parallel RTM execution time comparison on DeCloud
environment.

Velocity Model Serial Time(s) Parallel Time(s)

3 layer 4.76 1.08

Marmousi 42.93 3.6
SPluto 54.91 5.5

Figure 10. CPU-based RTM
migration for 3 layer models.

Figure 11. Muti-device-based
RTM migration for 3 layer
models.

Figure 12. Difference between
CPU and Multi-device RTM
migration for 3 layer models.

Figure 13. CPU-based RTM
migration for the SPluto
model.

Figure 14. Multi-device RTM
migration for the SPluto
model.

Figure 15. Difference between
CPU and Multi-Device RTM
migration for SPluto model.

0
0

20

40

60

80

100

120

140

20 40 60 80 100 120 140 0
0

20

40

60

80

100

120

140

20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

0
0

50

100

150

200

250

300

350

100 200 300 0
0

50

100

150

200

250

300

350

100 200 300 0
0

50

100

150

200

250

300

350

100 200 300

www.jbth.com.br

30 JBTH 2023; (January)CPU-Based Stencil in a Multi-Device Environment

Conclusion

The first step involves migrating a serial base
RTM, already changed to provide simultaneous
forward/backward propagation, to DPC++ and the
improvements related to the DPC++ source code
implementation. This step was achieved, as shown
in the image migration in the results section. In
the second step, researchers focused on possible
optimizations to achieve those objectives: the
application was rewritten, focusing on thread
hierarchy, as shown in Figure 6.

Finally, the Multi-devices RTM application was
successfully developed and tested. Intel® tools
also helped to decide what resource to use and
correctness check. The Multi-devices RTM code
is a small workload but highly time-consuming.
Further work could explore larger workloads,
aiming to use the whole GPU memory and the
main memory.

Acknowledgments

We thank the editors and reviewers for their
constructive comments and suggestions. We
would like to thank FINEP for the support of the
Supercomputing Center of SENAI CIMATEC.

References

1. Baysal E, Kosloff DD, Sherwood JW. Reverse time
migration. Geophysics 1983;48(11):1514–1524.

2. McMechan GA. Migration by extrapolation of time-
dependent boundary values. Geophysical Prospecting
1983;31(3):413–420.

3. Yang P, GaoJ, WangB. RTM using effective boundary
saving: A staggered grid GPU implementation.
Computers & Geosciences 2014;68:64–72.

4. Zhang L, Slob E. Free-surface and internal multiple
elimination in one step without adaptive subtraction.
Geophysics 2019;84(1):A7–A11.

5. Zhang L, Slob E. Marchenko multiple elimination of a
laboratory example. Geophysical Journal International
2020;221(2):1138–1144.

	1a Capa Suplemento
	JBTH SUPLEMENTO 1-2023-C
	4a Capa Suplemento

