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This work aims to present the results obtained in optimizing a viscoacoustic geophysical model written with the 
DEVITO tool and optimized using the OpenACC tile directive for GPU execution. We compared three versions 
of the operator using the NVIDIA NCU profiling tool: Naive, Tiling (32,4,4), and Mixed Tiling. The Naive version 
does not use the loop tiling technique, the Tiling (32,4,4) version applies a tile of dimensions (32, 4, 4), and the 
Mixed Tiling version uses different tile sizes to other loop nests. Analyzing the experimental results, it is notable 
that the optimized versions substantially increase the cache hit rates and reduce the execution time by about 
50%, attesting to the validity of the proposed solutions.
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Introduction

DEVITO is a tool for implementing computational 
mesh models in symbolic language. It is a Python 
package with automated code generation that allows 
portability to different platforms [1]. DEVITO is a 
helpful tool for building geophysical models for 
parallel architectures. 

DEVITO allows OpenACC to offload the 
workload to a device with more processing power, 
such as a GPU. OpenACC is a programming 
standard for optimizing C, C++, and Fortran code. 
The user uses directives to inform the regions of 
the code that he wants to optimize in an automated 
way [2].

Through environmental variables, DEVITO can 
generate code with OpenACC directives capable 
of promoting GPU execution and parallelization. 
One such directive is the tile directive, which 
applies the loop tiling technique [3] in a loop 
nest with the dimensions defined as a parameter.  
The loop tiling technique modifies a loop nest, 
so data is no longer accessed sequentially in one 
dimension but in multidimensional blocks of 

predefined size [3]. This transformation uses better 
nests’ spatial and temporal locality [4,5].

 
Materials and Methods

Developed Approaches

In the analyzed application, two kernels have a 
more extensive workload, responsible for a large 
part of the required computational effort: R and RP.

Thus, we selected three approaches for analysis 
in the viscoacoustic model.

Naive
The tool’s default approach, without any 

parameter optimization or modification of the 
generated code. It only counts on the “advanced” 
default optimization level. It is the most 
straightforward approach.

Tiling (32,4,4)
The approach only uses the part-tile flag 

(DEVITO native), not requiring any transformations 
of the .cpp code generated by the framework. This 
flag applies the loop tiling technique to all loop 
nests restrained in the operator, using OpenACC’s 
tile directive. The combinations of dimensions that 
achieved the best performance were 32 elements 
in x, 4 elements in y, and 4 in z [simply: (32,4,4)].

Mixed Tiling
It works with different tile sizes for loop nests.



www.jbth.com.br

2 JBTH 2023; (January)Optimization of a Geophysical Application in GPU

Using the OpenACC tile directive, the R kernel 
applies the technique of loop tiling with dimensions 
(32,8,4), whereas the RP kernel, through the same 
process, applies a tiling of sizes (32,4,4). This 
variation in tile dimensions in the two kernels 
occurs because the R kernel reached the best 
performance with measurements (32,8,4), while the 
RP kernel got its peak performance with dimensions 
(32,4,4).

Hardware and Experiments

NVIDIA Tesla V100 SXM2 32 GB cards 
performed all tests, with exclusive access to the 
hardware and no competition with other applications. 
The following environmental variables were used 
to enable GPU execution with OpenACC:  

● DEVITO_PLATFORM=nvidiaX;
● DEVITO\_ARCH=nvc;
● DEVITO\_LANGUAGE=openacc.

The tests were carried out on a three-dimensional 
model with 701 elements in each dimension, a value 
that pushed the GPU memory storage capacity to 
the limit. Each run conducted for 1,000 iterations 
and applied a space order of 16 elements. All 
runtime results are means of three runs performed 
under the same conditions and parameters.

Profiling Tool - Nsight Compute (NCU)

Nsight Compute (NCU) [6] is a CUDA kernel 
profiler that has a graphical interface and operates 
by the command line. It offers a series of metrics 
and sections (metric grouping), which can be 
collected in a customized way by the user to restrict 
the scope of the analysis. It is the correct tool to 
obtain statistical and mathematical information 
for each application’s kernel. Three sections of the 
NCU were used to analyze the kernels presented 
in this work.

GPU Speed Of Light Roofline Chart
This section brings two metrics of great value 

for performance analysis. Arithmetic intensity is 

the ratio of floating-point operations performed per 
second, memory transfer in bytes, and per second. 
This is a metric strictly related to memory traffic. 
Performance measures the number of floating point 
operations per second (FLOP/s) and indicates 
computational performance.

Memory Workload Analysis
Displays data-related GPU memory resources, 

including cache hit rates. The most relevant 
metrics in this section are cache hit rates on L1 
and L2.

Scheduler Statistics
This section summarizes the schedulers that 

issue instructions. Each scheduler maintains a group 
of warps from which it can pull instructions. In 
each cycle, each scheduler checks the status of the 
warps allocated in its group (Active Warps), looking 
for warps that are not stalled (Eligible Warps) and, 
therefore, ready to issue its next instruction. An 
eligible warp is then selected, and its instructions 
are issued (Issued Warp). The parameter that 
strongly impacts the occupancy rate of a scheduler 
is the number of registers needed per thread. Each 
GPU SM has 4 sub-partitions, each one with a 
scheduler.

 
Results and Discussion

Table 1 compares the execution times in seconds 
for each of the three approaches. Table 2 presents 
the number of cycles spent on each one of the 
kernels.

Table 3 shows the R kernel results for this NCU 
GPU Speed of Light Roofline Chart section. A 
significant improvement in both performance and 
arithmetic intensity is presented in both optimized 
approaches. The Tiling (32,4,4) approach almost 
tripled the values of these two metrics concerning 
that obtained by the Naive version, and the Mixed 
Tiling approach was able to surpass three times 
the values obtained by the Naive version in both 
metrics. In the RP kernel, the improvement was 
also noticeable (Table 4), reaching an average of 
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Approach Time (s)
Naive 220.14
Tiling (32,4,4) 112.47
Mixed Tiling 110.01

Table 1. Execution times.

Table 2. Cycles spent on each kernel.

Approach R RP
Naive 117.272.997 276.679.918
Tiling (32,4,4) 52.049.206 110.608.921
Mixed Tiling 43.834.245 110.124.618

Table 3. R - GPU speed of light roofline chart.

Approach Performance
(FLOP/s)

Arithmetic 
Intensity

(FLOP/byte)
Naive 0.317 · 1012 0.53
Tiling (32,4,4) 0.953 · 1012 1.57
Mixed Tiling 1.069 · 1012 1.84

FLOP per byte almost twice that presented by the 
Naive version in the two optimized approaches. 
The average performance also increased notably in 
the Tiling (32,4,4) and Mixed Tiling approaches. 
The results presented by the two tables indicate 
an increase in processing capacity over the 
same volume of data (arithmetic intensity) and 
better use of available computational resources 
(performance).

Tables 5 and 6 show the results of the R and 
RP kernels for the Memory Workload Analysis 
section for the three approaches. We significantly 
increased the cache rates achieved in L1 and L2 in 
the R kernel with the two optimized approaches. 
The Mixed Tiling approach performed better in L1, 
increasing the hit rate at this cache level by almost 
44 percentage points compared to the Naive version 
and by more than 6 percentage points compared to 
the Tiling (32,4,4) version. In the RP kernel, the 
optimized approach also increased the cache hit rate 
at both levels. In L1, this increase is more significant, 
getting close to reaching twice that obtained by the 
Naive version, while in L2, the growth is lower 
but still perceptible, rising by about 7 percentage 
points compared to the non-optimized version.  
The values obtained in this section by the two 
optimized approaches in both kernels converge 
with the results presented. Increasing cache hit 
rates allows more efficient use of data, reducing 
processing bottlenecks and allowing the application 
to use better available processing power (improved 
performance and arithmetic intensity). The higher 
L1 cache hit rate of the Mixed Tiling approach 
compared to the Tiling (32,4,4) approach is 
one factor that explains the slightly superior 
performance of one strategy over the other.

Table 4. RP - GPU speed of light roofline chart.

Approach Performance
(FLOP/s)

Arithmetic 
Intensity

(FLOP/byte)
Naive 0.370 · 1012 0.63
Tiling (32,4,4) 0.581 · 1012 1.23
Mixed Tiling 0.583 · 1012 1.22

Table 5. R - Memory Workload Analysis.

Approach L1 Cache Hit 
(%)

L2 Cache Hit 
(%)

Naive 34.37 36.38
Tiling (32,4,4) 71.42 59.95
Mixed Tiling 77.73 58.57

Table 6. RP - Memory Workload Analysis.

Approach L1 Cache Hit 
(%)

L2 Cache Hit 
(%)

Naive 33.68 30.61
Tiling (32,4,4) 61.60 37.92
Mixed Tiling 61.59 37.54
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Table 7 presents the R kernel results for the 
scheduler statistics section. Although there is no 
significant variation in the theoretical maximum 
amount of warps per scheduler between the 
Tiling(32,4,4) and Naive versions, the rates of 
eligible and effectively issued warps are notably 
accentuated in the Tiling (32,4,4) and Mixed Tiling, 
which reach values that exceed three times that 
obtained by Naive, with the Mixed Tiling approach 
having slightly higher values. A similar but more 
timid result is obtained by the optimized approaches 
in the RP kernel, as shown in Table 8. The 
theoretical maximum of warps per scheduler does 
not change; however, the amount of eligible warps 
exceeds twice the Naive version, and the average 
warps emitted per cycle jumps from 0.14 to 0.25. 
The results point to better use of the schedulers in 
the Tiling(32,4,4) and Mixed Tiling versions, which 
start to emit more warps per cycle and mitigate the 
possibilities of taking the computational resources 
to idleness. The increase in cache hit rates in 
the optimized approaches is the main factor that 
increased the average warps emitted.

Conclusion

The results reveal that both kernels are positively 
sensitive to loop tiling. In the R kernel, the 
application of the OpenACC tiling directive had 
the main effect of substantially increasing the 
cache hit rates at both levels in the two optimized 
approaches. This better use of cache memory allowed 
an increase in computational efficiency, observed 
in improving metrics such as arithmetic intensity, 
performance, and the rate of warps emitted per cycle.  
After applying the loop tiling technique, the RP 
kernel went through a process similar to that of 
the R kernel, which had as its main positive effect 
the increase in cache hit rates. This more efficient 
use of cache memory increased computational 
efficiency, increasing metrics such as arithmetic 
intensity, performance, and the rate of warps emitted. 
Therefore, despite the very similar version of the two 
optimized approaches, the slightly higher cache hit 
rate of the Mixed Tiling approach over Tiling(32,4,4) 
in L1 ends up giving the process that uses mixed 
tiling dimensions a slightly better performance.

 
Table 7. R - Scheduler statistics.

Approach Theoretical 
Maximum

Eligible Emitted

Naive 5 0.19 0.11
Tiling (32,4,4) 4 0.65 0.35
Mixed Tiling 8 1.16 0.42

Table 8. RP - Scheduler statistics.

Approach Theoretical 
Maximum

Eligible Emitted

Naive 4 0.19 0.14
Tiling (32,4,4) 4 0.40 0.25
Mixed Tiling 4 0.40 0.25
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