
www.jbth.com.br

44

Applications of the Information Dimension in Detecting Border Perturbations
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This study utilizes the concept of information dimension based on Shannon and Tsallis' entropy to analyze the 
contours of flat objects. Our objective is to employ the information dimension for detecting perturbations in 
borders. We create examples of squares with slight border perturbations, possessing the same mass and sharing 
identical box-counting dimensions yet exhibiting distinct information dimensions. This construction was devised 
with the understanding that entropy is responsive to the image frequency within each box. Consequently, the 
information dimension provides a more precise index of fractal shapes when compared to the box-counting 
dimension.
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Introduction

Numerous natural  phenomena exhibit 
irregularities and complexity across various 
observation scales. The use of fractals to quantify 
the complexity of such phenomena or natural 
objects is increasingly prevalent, primarily due to 
the widespread identification of self-similarities 
in nature [1]. A fractal can be conceptualized as 
a complex geometric shape composed of smaller 
replicas of itself.

Fractals, being mathematical constructs, cannot 
be entirely described using traditional Euclidean 
geometry. However, they can be associated with a 
numerical value known as the fractal dimension, 
which provides insights into how the fractal's shape 
(topological nature) occupies its habitat (Euclidean 
space). Moreover, the fractal dimension quantifies 
how the "size" of a fractal set varies with different 
observation scales.

The fractal dimension characterizes a set as 
a whole or its boundary. In the former case, it 
indicates the density with which the set occupies 
its spatial domain, while in the latter, it denotes 
the irregularity of its perimeter. In both cases, 

determining the fractal dimension entails measuring 
the complexity of objects.

Several adaptations of the fractal dimension 
have been proposed, often based on the Hausdorff 
dimension for its mathematical rigor [2]. However, 
these adaptations, such as the area-perimeter 
relationship and the box-counting dimension, are 
predicated on measuring specific characteristics 
of the dataset and relating them to a length scale 
through a power law. The fractal dimension thus 
emerges as a function of the power law exponent, 
representing the slope of a straight line in log-log 
space following linear regression.

In this study, we aim to investigate the existence of 
an adapted metric capable of resolving ambiguities 
inherent in fractal dimensions, particularly 
those related to the box-counting dimension. 
We demonstrate that the information dimension, 
derived from Shannon entropy and for the first time 
enhanced with Tsallis entropy, can effectively detect 
subtle border perturbations that may elude detection 
by traditional box-counting methods.

The significance of this research lies in its 
experimental validation of the application of 
the information dimension to discern border 
perturbations from flat objects. Notably, this 
technique holds promise for ecological applications, 
including the detection of pathologies in cells and 
leaves and forest monitoring efforts.

To generate examples illustrating ambiguities 
concerning the box-counting dimension, we 
construct squares with consistent mass along their 
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borders (pixels) and introduce perturbations while 
maintaining this mass. These perturbations result in 
varying pixel counts within each box, as determined 
by Shannon and Tsallis entropy, yielding different 
information dimensions for each perturbation.

The structure of this paper commences 
with a discussion of foundational concepts 
underpinning the method, including fractals, 
fractal dimension, box-counting dimension, 
and entropy. Subsequently, we characterize the 
dimensions and entropy variations specific to 
the information dimension and then describe the 
model and methodologies employed. We then 
present the results obtained and conclude with 
reflections on this research endeavor's limitations 
and future prospects.

 
Theoretical Framework

 
Fractals

 
The term 'fractal' was introduced by Mandelbrot 

in his seminal essay, derived from the Latin word 
'fractus,' meaning broken, to describe objects that 
exhibit irregularities beyond traditional geometric 
configurations. Mandelbrot [3] defined fractals as 
conceptual entities possessing a similar structure 
across all spatial scales, characterized by self-
similarity and scale-independence.

The fractal dimension, a fundamental concept 
in characterizing complex mathematical shapes 
known as fractals, quantifies the extent to which 
these shapes occupy space. Developed initially 
to quantify specific attributes of self-similar 
objects like fractal shapes, these measures find 
application in ecology, particularly in studying 
forest landscapes. This mathematical field offers 
captivating properties that can be appreciated 
for their beauty, intricacies, characteristics, and 
analogies.

The exploration of methods employing fractals 
and their geometric structures is pertinent, given 
the rising popularity of fractal geometry in 
recent years. It has emerged as an art form and a 
computationally driven tool for modeling various 

physical phenomena. Consequently, the significance 
of this knowledge becomes evident.

The box-counting dimension is one of the most 
widely used and computationally straightforward 
methods for computing the fractal dimension. 
However, as we will elucidate here, this method 
presents ambiguities stemming from its limitation 
to merely counting the number of boxes, or 
hypercubes, covering the analyzed object without 
considering the distribution of points within 
each covering box. This limitation underscores 
the potential value of extending the utility of the 
box-counting dimension through the information 
dimension.

 
Box-Counting Dimension

In the context of flat figures, this method consists 
of dividing the image into boxes, where the number 
of boxes containing some part of the figure, which 
represents the object under study, such as the 
fractal, are counted, and the dimension value can 
be calculated by following the Equation 1:

  
(1)

Let ε represent the side length of each box, 
and n(ε) denote the number of boxes containing 
any portion of the figure. As the scale decreases, 
the established dimension becomes more precise. 
The fundamental concept is to measure the figure 
while disregarding irregularities more minor 
than the scale ε by analyzing the behavior of the 
measurement as the scale approaches zero. Notably, 
the boxes are cubes for three-dimensional objects, 
whereas, in n-dimensional spaces, they are replaced 
by hypercubes.

 
Shannon Information Dimension

The concept of information dimension has 
yet to be widely adopted. Nevertheless, it offers 
a perspective on the complexity of information 
by considering the form and the distribution of 
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information within the object under study. This 
dimension is defined by Shannon entropy, as 
outlined by Seuront [4]. 

Additionally, we propose the utilization of 
Tsallis entropy to emphasize boxes containing more 
information about the object.

The information dimension, employing entropy, 
enables understanding the diversity and intricacy of 
information within a dataset. It is a crucial metric 
for assessing the quantity of potentially valuable 
and significant information within a system. 
Entropy, in this context, measures the uncertainty 
or disorder inherent in a system and can be regarded 
as a measure of the amount and distribution of 
information within a dataset.

In our study, the dataset for entropy comprises the 
distribution of pixels within each box. In contrast, 
the information dimension with entropy pertains 
to the diversity and distinctiveness of information 
present in the dataset. Higher entropy signifies a 
greater variety and diversity of information within 
the dataset.

Historically, entropy emerged in information 
theory to quantify the average information required 
to encode a message within a given system. It is 
computed based on the probability of occurrence of 
different events or symbols within a dataset.Entropy 
highlights scenarios where a dataset contains only a 
few symbols, resulting in low entropy due to limited 
information diversity.Conversely, entropy would 
be high in a dataset with a uniform distribution 
of various symbols, indicating a broader range of 
information.

The fundamental concept of entropy was 
developed to measure the expected rarity or surprise 
of a random variable X within its distribution. 
In literature, entropy is commonly regarded as a 
measure of information, quantifying the average 
amount needed to describe a dataset based on the 
probability distribution of events.

The formula for Shannon entropy is expressed 
in the Equation 2 as following:

  
(2)

Where X represents the random variable 
associated with a particular experiment, and p(x) 
denotes the probability of event x occurring across 
all possible events.
To adapt the box-counting dimension, the number 
of size boxes ε is replaced by the entropy of the 
size boxes ε, where the probability distribution is 
determined by the frequency of the figure within each 
box ε. Specifically, the information dimension using 
Shannon entropy is defined by Equations (3) and (4):

  
(3)

H(ε) in Equation 4 ) is the Shannon entropy

  
(4)

Here, pi(ε) denotes the relative frequency of the 
object within the size box ε. In other words, given 
N as the total number of pixels in the image and 
fi(ε) as the number of pixels within size box ε, we 
have the Equation 5 as following:

  
(5)

Varyinh i, the number of size boxes ε changes, 
ensuring the following:

  

Tsallis Information Dimension

The contribution of statistical mechanics, 
pioneered by Tsallis, was to propose a potential 
generalization of the renowned entropies of 
Boltzmann, Gibbs, and Shannon, providing a 
framework for describing physical systems [1].

Given that the Shannon information dimension 
accounts for the quantity of information within 
each box, it is natural to extend this concept by 
employing Tsallis entropy, defined by the Equation 
6 as following:

  
(6)
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It is worth noting that in the limit as q→1, the 
Tsallis entropy converges to the value of Shannon 
entropy. Consequently, we define the Tsallis 
information dimension as the Equation 7 below:

  
(7)

The parameter q modulates the information 
within each size bin ε, which can be harnessed to 
discern border perturbations more effectively.

 
Materials and Methods

We constructed examples of geometric shapes 
with identical box-counting dimensions yet differing 
information dimensions. This demonstration 
underscores that the information dimension 
effectively resolves ambiguities arising from the 
box-counting dimension, providing deeper insights 
into the complexity of particular flat objects. Such 
insights hold significant potential for applications 
in various fields, including detecting pathologies in 
ecology or material wear in engineering.

Our geometric models were crafted using GIMP 
software. The algorithms, graphs, and tables were 
developed using Python programming within the 
VSCode-integrated development environment. 
Specifically, we employed GIMP software to create 
squares (Figure 1), ensuring that their contours 
contained an equal number of pixels, thereby 
maintaining the same mass.

Notably, the vertices and dimensions of these 
squares were powers of two. This meticulous 
approach aimed to ensure that subdivisions of the 
boxes in the box-counting algorithm preserved the 
intersections of the previous divisions.

Additionally, we developed a software tool 
named FracDim in the Python programming 
language. This software facilitates the calculation of 
linear regressions for the box-counting dimensions 
and the Shannon and Tsallis information dimensions. 

We implemented algorithms for computing 
Shannon and Tsallis entropy. Initially, the software 
was tested using regular geometric shapes. With 
each iteration, subtle modifications were introduced 
to the borders of the shapes to generate various flat 
figures while maintaining the same box-counting 
dimension. This iterative process led to the 
creation of modified squares with alterations on 
one, two, three, and four sides, as depicted in the 
figures. Remarkably, these squares share identical 
box-counting dimensions but exhibit different 
information dimensions.

 
Results and Discussion

Examples of geometric figures with minor border 
perturbations were generated to illustrate how the 
information dimension can resolve ambiguities 
inherent in the box-counting dimension. Both 
Shannon's and Tsallis' information dimensions 
were applied.

Figura 1. Square A with 1 perturbed side; square B with 2 perturbed sides; square C with 3 perturbed sides; 
square D with all sides perturbed.

A) B)

C) D)
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Squar DBox DS

A 1.2796710276704335 0.33592615925964914
B 1.2796710276704335                                             0.33781554676065440
C 1.2796710276704335                                             0.33965496788217200
D 1.2796710276704335                                             0.34131330650656094

Table 1. Result of the box-counting dimension and Shannon.

Figure 2. Information dimension and box-counting 
for square A (Figure 1A).

Figure 3. Information dimension and box-counting 
for square B (Figure 1B).

Table 1 illustrates the ambiguity of the box-
counting dimension, denoted as DBox, where squares 
A, B, C, and D exhibit identical values. In the third 
column, the information dimension DS derived from 
Shannon's entropy is presented.

In Figures 2-5, corresponding to the perturbed 
squares A, B, C, and D, it is noteworthy that the 
Shannon information dimension consistently 
registers values lower than the box-counting 
dimension. On the y-axis, these graphs depict the 
natural logarithm of the number of boxes intersecting 
the figure and the entropy of each box. In contrast, 
on the x-axis, we depict the natural logarithm of 1/ε , 
where ε represents the length of the side of each box.

In Table 2, the same analysis was carried out by 
applying Tsallis entropy to the parameter q=0.5.

We observed that the entropy values were 
influenced by the parameter q, which can be 

advantageous in specific practical scenarios. This 
effect is illustrated in Figure 6, depicting the variation 
in Tsallis entropy within square A (Figure 1A).

 
Conclusion

This study delved into utilizing the information 
dimension, predicated on Shannon and Tsallis 
entropy, for detecting perturbations in the borders 
of objects representable by flat figures. Through 
targeted constructions, we showcased the efficacy of 
the information dimension in resolving ambiguities 
stemming from the box-counting dimension, 
thereby enhancing precision in analyzing 
border complexities in plane-modeled objects. 
The findings underscored that squares with subtle 
contour perturbations exhibited identical box-
counting dimensions but divergent information 
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Figure 4. Information dimension and box-counting 
for square C (Figure 1C).

Figure 5. Information dimension and box-counting 
for square D (Figure 1D).
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Table 2. Result of the box-counting dimension and Tsallis. 

Square DBox DS

A 1.2796710276704335 0.7899382233835297
B 1.2796710276704335 0.7976331670012815
C 1.2796710276704335 0.8054932828767232
D 1.2796710276704335 0.8126195937450961

Figure 6. Dimension of information with Tsallis entropy of Figure 1A.
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dimensions. This underscores entropy's sensitivity 
to the distribution of information within each box, 
rendering it a potent tool for detecting irregularities.

Moreover, the introduction of Tsallis entropy 
in this study facilitated a heightened emphasis 
on the information within each box, courtesy 
of its entropic parameter q. This parameter 
modulated information sensitivity, proving 
beneficial in various practical applications. 
The significance of this research lies in empirically 
demonstrating the efficacy of the information 
dimension in discerning border perturbations in 
flat objects. This method holds promise across 
diverse domains, including ecology, pathology 
detection in cells and leaves, and forest monitoring. 

The results underscore the information dimension's 
utility as a valuable tool for analyzing border 
perturbations and, consequently, object complexity. 
This opens avenues for further advancements and 
future applications.
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