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Evaluation of LSTM and Wavelet Methods for Wind Speed Forecasting in Bahia, Brazil
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The pursuit of sustainable development is intricately linked to the effective management of renewable energy 
resources, with wind energy emerging as a key player on the global stage. However, the inherent volatility and 
intermittency of wind patterns pose significant challenges to accurate wind speed forecasting, which is crucial 
for the stable operation of wind turbines. Our study presents a novel forecasting model that integrates cutting-
edge data decomposition techniques with Long Short-Term Memory (LSTM) networks in this context. Our 
approach leverages advanced methodologies such as Wavelet Transform (WT), Empirical Mode Decomposition 
(EMD), and Enhanced Empirical Mode Decomposition (EEMD) to segment time series data into distinct high 
and low-frequency components. These segmented signals are then individually forecasted using Bidirectional 
LSTM (BiLSTM) networks, with the amalgamation of these predictions providing the final forecast output. Our 
empirical findings demonstrate that the hybrid model, particularly utilizing EMD and EEMD, exhibits superior 
performance compared to existing forecasting models in terms of both accuracy and stability. By effectively 
combining sophisticated data decomposition techniques with state-of-the-art deep learning algorithms, our 
proposed model offers a robust solution for wind speed forecasting. This facilitates the efficient management 
of renewable energy resources and advances the cause of sustainable development initiatives worldwide. 
Keywords: Wind Energy. Wind Speed Forecasting. Data Decomposition. Long Short-Term Memory. Wavelet 
Transform.
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Introduction

In the quest for sustainable energy solutions, 
wind energy has emerged as a viable alternative 
for large-scale power plants and wind farms. It has 
proven its efficacy in smaller-scale applications 
[1,2]. The energy generation by wind turbines 
hinges on wind speed consistently ranging between 
4m/s and 5m/s [3], implying that fluctuations in 
speed can significantly impact generation [4].

Wind speed forecasting models are categorized 
into three main types: physical, statistical, and 
hybrid [5]. Recent advancements in machine 
learning and deep learning have showcased their 
superior predictive capabilities over traditional 
models [6]. Techniques such as support vector 
regression (SVR) and artificial neural networks 
(ANN) have set the standard in wind speed 
forecasting [7].

Hybrid models, amalgamating machine learning 
and deep learning techniques stand out as the most 
robust and dependable means of predicting wind 
speed, promising enhanced accuracy and reliability. 
Effective wind speed forecasting emerges as a 
pivotal element in wind farm management, ensuring 
optimal turbine operation and maximal energy 
production. However, wind's inherently volatile 
and intermittent nature poses formidable challenges 
in modeling and accurately forecasting its speed.
This study delves into an advanced approach that 
integrates deep learning techniques and wavelet-
based time-series analysis to tackle this issue and 
present a dependable forecasting system. In this 
context, a promising method embraced in the 
literature involves hybrid models marrying the 
Wavelet Transform (WT) and Long Short-Term 
Memory (LSTM)[8]. WT is often leveraged to 
disaggregate wind speed signals, eliminating noise 
and irregularities from the data. The precision of 
this wavelet-based decomposition process crucially 
hinges on the selection of decomposition levels and 
the choice of the mother wavelet [9].

Conversely, owing to the intermittent and 
nonlinear nature of wind speed data, Ensemble 
Empirical Mode Decomposition (EEMD) has 
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emerged as a potent data decomposition technique 
that eliminates noise and analyzes intricate 
time series [10]. LSTM networks, particularly 
bidirectional ones, exploit available information 
to the fullest extent, considering both past and 
future observations of wind speed data [11]. Fusing 
WT and LSTM facilitates robust and optimized 
data analysis, ensuring more accurate and reliable 
forecasts.

 
Related Works

Several studies have focused on LSTM-based 
models and eliminating noise from wavelet 
decomposition-based data. In the work of Kovoor 
and colleagues [12], a hybrid WT-LSTM-SVR 
model was proposed, combining Wavelet Transform 
(WT), Short and Long Term Memory Network 
(LSTM), and Support Vector Regression (SVR) 
to improve wind speed forecasting. The model 
achieved an RMSE of 0.218 m/s, MAE of 0.203 
m/s, and MAPE of 2.014%, highlighting its 
superiority compared to traditional approaches. 
The study by Ziggah and colleagues [13] proposes 

a new hybrid model, DWT-PSR-AOA-BPNN, to 
predict wind speed, combining the Discrete Wavelet 
Transform (DWT), Phase Space Reconstruction 
(PSR), Aquila Optimization Algorithm (AOA), and 
Backpropagation Neural Network (BPNN).

Materials and Methods

An LSTM (Long Short-Term Memory) is a 
recurrent neural network (RNN) designed to handle 
data sequences, such as time series, more efficiently 
than traditional RNNs (Figure 1).

In Figure 1, we observe the intricate architecture 
of the LSTM cell, characterized by three distinct 
ports: the forgetting, input, and output ports. Central 
to LSTM networks is the memory cell, acting 
as a repository for state information, which sets 
them apart from conventional neural networks. 
Activation of the input gate initiates the absorption 
of new information into the cell, while the forget 
gate, when triggered, expunges previous data.

Within the feedback loop, the sigmoid function 
determines the retention or dismissal of information 
within the memory cell, while the hyperbolic 

Figure 1. Structure of the internal LSTM cell.
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tangent function regulates its input and output. 
Through the seamless integration of these functions, 
LSTM networks can selectively encode or discard 
information, enabling them to manage time series 
data and generate accurate forecasts adeptly.

 
Study area - City of Alagoinhas - BA

In this study, we used a data set from a station 
named Alagoinhas, Station Code: 83249, Latitude: 
-12◦14'86", Longitude: -38◦50'57", Altitude: 47.56, 
Start Date: 2000-05-12, End Date: 2023-07-14 
(Table 1).

  
The Data Set

The National Institute of Meteorology of 
the Government of Brazil provides the wind 
speed time series with daily measurements. 
Table 2 presents the details of the data sets. 

Table 1. Characteristics of the study area.

Characteristics Data
Location North Coast
Latitude -12° 14' 86"

Longitude 38° 42' 52"
Average temp 24.7°
Precipitation 1400 mm

Table 2. Statistical analysis of dataset with daily 
average from 01/2000 to 2023-07-14 .

Metric Average Daily Speed 
(m/s)

mean 1.563804
std 0.157013
min 1.184804
25% 1.444741
50% 1.548888
75% 1.684539
max 1.993306

Data Decomposition Technique

The various data decomposition techniques 
investigated in this study include wavelet transforms, 
empirical mode decomposition, ensemble empirical 
mode decomposition, and empirical wavelet 
transforms. Here, we highlight the theoretical 
basis of Empirical Mode decomposition (EMD) 
and Ensemble Empirical Mode Decomposition 
(EEMD).

Empirical Mode Decomposition (EMD)

Empirical Mode Decomposition - EMD. This 
method divides the original signal into many 
IMFs (Intrinsic Mode Functions) and a residual 
component.

 
Ensemble Empirical Mode Decomposition (EEMD)

EEMD is an extension of EMD. It was proposed 
to solve the problem of mixed modes often 
observed in EMD. The main feature of EEMD 
is repeatedly adding white noise to the original 
signal and then applying EMD to each of these 
noisy versions. Daubechies (db1) is applied to 
wind speed data and decomposed into three levels, 
resulting in three detail components and one 
approximation component (Figure 2).

 
The Proposed Hybrid Method

During the data cleaning phase for Alagoinhas, 
missing values, inconsistent data, and other 
anomalies that could compromise the integrity 
of the data were identified and corrected. Next 
came the integration stage, and since the data 
could come from different sources or sensors, 
it must be consolidated cohesively. Finally, the 
transformation phase involved activities such 
as normalizing values, converting units, and, 
in some cases, creating new derived variables.                                                                                                     
Figure 3 shows the structure of the proposed 
method.
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Figure 2. Decomposition of wind speed data time series using WT in data sets from Alagoinhas/BA.

Figure 3. The structure of the hybrid model.
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Metric Value

MSE 0.0028

MAE 0.0357

RMSE 0.0528

ASM 17.34%

MBE 0.0016

rMBE 0.79%

rRMSE 25.86%

R² 0.4722

Table 3. LSTM and WT Model metrics.

About Validation

The efficiency of the proposed hybrid 
EEMD-based model is evaluated by comparing 
its performance with benchmark models, 
namely decomposition-based LSTM models, 
decomposition-based SVR models, and individual 
models such as LSTM, SVR, and ANN. Extensive 
evaluation of the proposed hybrid decomposition-
based models uses statistical error indicators such 
as the MAE index, RMSE, and R².

The MAE (mean absolute error) is the difference 
between actual and observed values. A thorough 
evaluation of the proposed hybrid decomposition-
based models ensures a robust assessment of their 
performance and efficiency against established 
benchmarks and individual models.

 
Results and Discussion

The combination of these techniques (LSTM 
and WT) aimed to exploit the ability of LSTMs 
to learn and memorize long-term dependencies in 
time series and the ability of the Wavelet Transform 
to filter out noise and highlight key features in the 
data (Table 3).

The Mean Square Error (MSE) recorded is 
0.0028, close to zero, suggesting that the model 
performed well, with predictions relatively close to 
the actual values. Additionally, the Mean Absolute 

Error (MAE) is 0.0357, indicating that, on average, 
the model's predictions deviate by 0.0357 units 
from the actual value. The Root Mean Square 
Error (RMSE) of 0.0528 suggests that the model is 
sensitive to outliers but offers reasonable accuracy.

The Mean Absolute Percentage Error (MAPE) 
of 17.34% suggests that the model may not be 
suitable for high-precision applications. The Gross 
Mean Error (MBE) and Relative Gross Mean 
Error (rMBE) are 0.0016 and 0.79%, respectively. 
Values close to zero indicate no systematic 
bias in the forecasts, which is a good sign. 
The Relative Root Mean Square Error (rRMSE) is 
25.86%, suggesting that the model has an average 
percentage deviation of approximately 25.86% 
from the real values. Finally, the coefficient of 
determination (R²) was 0.4722. This metric indicates 
how well the model's predictions correspond to the 
actual values. It suggests that the model explains 
around 47.22% of the variance in the observed data.

 
Using LSTM + EMD

Table 4 shows the hybrid model evaluation 
metrics for each Intrinsic Mode Function (IMF).

Upon examining the values presented in Table 
4, a discernible trend emerges, showcasing an 
enhanced accuracy of estimates as we progress from 
the initial MFIs to the latter ones. Notably, the MSE 
initially stands at 0.003 for MFI1, steadily declining 
to a remarkable 0.0001 for MFIs 11 and 12. This 
pattern is mirrored in metrics like MAE and RMSE, 
which attain their lowest points in the final MFIs.

The R² value, serving as the coefficient of 
determination, offers insights into the predictability 
of variance in dependent data based on independent 
variables.

Furthermore, attention is drawn to the MAPE, 
whose high values, particularly in cases where 
actual values approach zero, can be attributed to the 
disproportionate impact of minor absolute errors on 
percentage errors.

The MBE and rMBE shed light on whether 
the models overestimate or underestimate actual 
values on average. Data analysis suggests that the 



www.jbth.com.br

JBTH 2023; (Suppl 2) 23LSTM and Wavelet Methods for Wind Speed

Table 4. Evaluation for each Intrinsic Mode Function (IMF) after the EMD application.

Metric MSE MAE RMSE MAPE MBE rMBE rMSE R2

IMF1 0.003 0.038 0.054 775.27% 0.600 -117.29% 1062.32% 0.238

IMF2 0.001 0.019 0.027 469.28% 0.620 -126.54% 554.59% 0.853

IMF3 0.001 0.010 0.012 191.89% 0.700 34.45% 236.76% 0.981

IMF4 0.001 0.002 0.003 52.20% 0.180 35.50% 63.99% 0.999

IMF5 0.001 0.002 0.002 41.43% 0.200 39.29% 42.91% 0.999

IMF6 0.001 0.001 0.001 21.8% 0.060 12.09% 25.16% 1.000

IMF7 0.001 0.001 0.001 18.82% -0.070 -14.87% 21.10% 1.000

IMF8 0.001 0.001 0.001 15.71% -0.080 -16.08% 17.62% 1.000

IMF9 0.001 0.002 0.002 37.37% -0.160 -33.26% 34.78% 0.999

IMF10 0.001 0.001 0.001 16.41% -0.090 14.85% 18.53% 0.999

IMF11 0.0001 0.000 0.000 9.72% -0.010 -8.81% 11.20% 1.000

IMF12 0.0001 0.000 0.000 17.48% -0.030 -12.20% 19.51% 1.000

Table 5. Evaluation for each Intrinsic Mode Function (IMF) after application of EEMD.

Metric MSE MAE RMSE MAPE MBE rMBE rMSE R2
IMF1 0.0021 -0.0309 0.0459 6.59% -0.0002 -0.05% 9.35% 0.3958
IMF2 0.0003 0.0126 0.0180 2.67% 0.0022 0.45% 3.71% 0.8878
IMF3 0.000 0.0038 0.0053 0.78%   0.0008 0.15% 1.02% 0.9952
IMF4 0.000 0.0013 0.0016 0.29% 0.0009 0.20% 0.34% 0.9997
IMF5 0.000 0.0013 0.0017 0.31% -0.0004 0.20% 0.38% 0.9997
IMF6 0.000 0.0008 0.0010 0.19% -0.0006 -0.13% 0.21% 0.9999
IMF7 0.0000 0.0007 0.0008 0.15% 0.0007 0.14% 0.15% 10000
IMF8 0.000 0.0008 0.0009 0.19% -0.0008 0.16% 0.18% 10000
IMF9 0.000 0.0018 0.0019 0.42% 0.0018 0.16% 0.44% 0.9993

IMF10 0.000 0.0002 0.0002 0.05% 0.0002 0.05% 0.05% 10000
IMF11 0.0000 0.0011 0.0012 inf -0.0010 -2.43% 0.05% 0.9989

models demonstrate improved performance in the 
later MFIs compared to their earlier counterparts.

 
Using LSTM + EEMD

Looking at the values in Table 5, the MSE starts 
at 0.0021 for MFI1 and decreases consistently, 
reaching shallow values in the later MFIs.
Similarly, the MAE and RMSE follow the 

same trend, indicating that the later MFIs 
have less variation and are more predictable. 
The MAPE for MFI10 is remarkably low, just 
0.05%, suggesting excellent percentage accuracy, 
while the initial MFIs have higher values.

The MBE and rMBE indicate, on average, whether 
the models overestimate or underestimate the real 
values. As seen in most MFIs, values close to zero 
indicate no clear systematic bias in the forecasts. 
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For MFIs 7 to 10, the R² values are equal to or close 
to 1, indicating an almost perfect fit. On the other 
hand, IMF1 has a lower value, 0.3985, indicating 
a less precise fit.

Therefore, the models perform significantly 
better in the later MFIs than the initial ones, with 
the error metrics reaching minimum values and the 
R² approaching 1 in the later MFIs—significant 
potential for making accurate predictions. 
 
Comparative Study

The performance of the proposed model is 
evaluated against other EWT-based models 
proposed by various researchers. Table 6 compares 
the MAE and RMSE values of some published 
models. 

A comparison of the proposed model in terms 
of MAE and RMSE reveals that the model 
outperforms other models in predicting wind speed. 
As the table shows, the error values increase as the 
prediction horizon increases, which decreases the 
model's accuracy.  

 

Conclusion

The proposed hybrid model adopted data 
decomposition methods such as WT, EMD, and 
EEMD to partition the wind speed data into high 
and low-frequency signals. LSTM networks 
were applied to train and predict these different 
signals. Specifically, the model proved superior to 
those presented, and its effectiveness was further 
optimized by incorporating jump connections.

Despite the achievements, we recognize some 
limitations in the proposed model, which also indicate 
valuable directions for future research. The current 
model focuses on predictions based on univariate 
LSTM networks without incorporating correlated 
characteristics. Thus, a logical expansion would be 
to develop multivariate BiDLSTM models, including 
temperature and wind direction. In addition, adopting 
hybrid data decomposition techniques can be explored 
to improve model performance further. 

Finally, considering computational efficiency, 
using lighter networks, such as echo networks, 
represents a promising path.

 
Table 6. Comparison of the best results from related studies.

Reference MAE(m/s) RMSE(m/s) MAPE%
Our Study (IMF10) 0.0002 0.0002 0.0475
U and Koover [12] 0.203 0.218 2.014

Jnr et al [13] 1.1490 1.4190 0.2743
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